

MAHENDRA ARTS & SCIENCE COLLEGE

(Autonomous)

Affiliated to Periyar University, Salem.

Accredited by NAAC with 'A' Grade & Recognized u/s 2(f) and 12(B) of the UGC Act 1956

Kalippatti - 637 501, Namakkal (Dt), Tamil Nadu.

DEPARTMENT OF BIOTECHNOLOGY

Number of Courses Focusing on Employability/ Entrepreneurship/ Skill Development

Programme: B.Sc. Biotechnology

S.No.	Year	Total No. of Courses	Employability (1)	Entrepreneurship (2)	Skill development (3)	Total No. of Courses (1+2+3)
١.	2020-2021	55	4	3	11	18
۵.	2019-2020	53	4	2	13	19
3.	2018-2019	54	3	2	15	20
4.	2017-2018	33	-	1	8	9
5.	2016-2017	15	-	-	1	1

Head of the Department HEAD OF THE DEPARTMENT

Department of Biotechnology, Mahendra Arts & Science College (Autonomous), Kalippatti (Po) - 637 501. Tiruchengode (Tk), Namakkal (Dt). Tamil Nadu. India. Principal
PRINCIPAL
MAHENDRA ARTS & SCIENCE COLLEGE

(Autonemous)
Kalipoatti (PO) - 637 501, Namakkal (DT)

PRINCIPAL
MAHENDRA ARTS & SCIENCE COLLEGE
(Autonomous)

" 1901 - 637 501, Namakkal (DT

MAHENDRA ARTS & SCIENCE COLLEGE

(Autonomous)

Affiliated to Periyar University, Salem.

Accredited by NAAC with 'A' Grade & Recognized u/s 2(f) and 12(B) of the UGC Act 1956

Kalippatti - 637 501, Namakkal (Dt), Tamil Nadu.

DEPARTMENT OF BIOTECHNOLOGY

List of Courses Focusing on Employability/ Entrepreneurship/ Skill Development (Regulations – 2019)

Programme: B.Sc. Biotechnology

S.No.	Course Name	Course Code	Employability	Entrepreneurship	Skill development
1.	Applied Microbiology	M19UMBA02			✓
2.	Biophysics & Bioinstrumentation	M19UBTS01			~
3.	Bioinformatics	M19UBTS02			✓
4.	Health and Hygiene	M19NBT01			✓
5.	Food and Nutrition	M19NBT02			✓
6.	Entrepreneurship in Biotechnology	M19NBT03		√	
7.	Agricultural Biotechnology	M19NBT04		~	
8.	Immunology	M19UBT05			✓
9.	rDNA Technology	M19UBT06			✓
10.	Bioprocess Technology	M19UBT07			✓
11.	Bioethics and Biosafety	M19UBTE01			~
12.	Nursery and gardening	M19UBTE03		✓	
13.	Herbal Technology	M19UBTE04	✓		
14.	Industrial Safety	M19UBTE08			✓
15.	Industrial Biotechnology and IPR	M19UBTS03	✓		
16.	Environmental Biotechnology	M19UBT09			· .
17.	Food Biotechnology	M19UBTE05	✓		
18.	Microbial Disease and Control	M19UBTE06		PRINCIPAL	1
19.	Pharmaceutical Biotechnology	M19UBTE07		RA ARTS & SCIENCE CO (Autonomous) (PO) - 637 501. Namakkal	

S.No.	Course Name	Course Code	Employability	Entrepreneurship	Skill development
20.	Nano-Biotechnology	M19UBTS04			✓
21.	Diagnostics Biotechnology	M19UBTJ01	✓		
22.	Food Process Technology	M19UBTJ02	✓		-

Head of the Department

HEAD OF THE DEPARTMENT

Department of Biotechnology, Mahendra Arts & Science College (Autonomous), Kalippatti (Po) - 637 501. Tiruchengode (Tk), Namakkal (Dt). Tamil Nadu. India. Principal

PRINCIPAL MAHENDRA ARTS & SCIENCE COLLEG.

(Autonomous)

Kalippatti (PO) - 637 501, Namakkal (DT)

PRINCIPAL

MAHENDRA ARTS & SCIENCE COLLEC-

(Autonomous)

Kalippatti (PO) - 637 501, Namakkal (DT

MAHENDRA ARTS & SCIENCE COLLEGE

(Autonomous)

Affiliated to Periyar University, Salem.

Accredited by NAAC with 'A' Grade & Recognized u/s 2(f) and 12(B) of the UGC Act 1956

Kalippatti – 637 501, Namakkal (Dt), Tamil Nadu.

DEPARTMENT OF BIOTECHNOLOGY

List of Courses Focusing on Employability/ Entrepreneurship/ Skill Development (Regulations – 2019)

Programme: B.Sc. Biotechnology

S.No.	Name of the Course	Course Code	Employability/ Entrepreneurship/ Skill development	Year of introduction (during the last five years)
1.	Applied Microbiology	M19UMBA02	Skill development	2020 - 2021
2.	Biophysics & Bioinstrumentation	M19UBTS01	Skill development	2020 - 2021
3.	Bioinformatics	M19UBTS02	Skill development	2020 - 2021
4.	Health and Hygiene	M19NBT01	Skill development	2020 - 2021
5.	Food and Nutrition	M19NBT02	Skill development	2020 - 2021
6.	Entrepreneurship in Biotechnology	M19NBT03	Entrepreneurship	2020 - 2021
7.	Agricultural Biotechnology	M19NBT04	Entrepreneurship	2020 - 2021
8.	Immunology	M19UBT05	Skill development	2020 - 2021
9.	rDNA Technology	M19UBT06	Skill development	2020 - 2021
10.	Bioprocess Technology	M19UBT07	Skill development	2020 - 2021
11.	Bioethics and Biosafety	M19UBTE01	Skill development	2020 - 2021
12.	Nursery and gardening	M19UBTE03	Entrepreneurship	2020 - 2021
13.	Herbal Technology	M19UBTE04	Employability	2020 - 2021
14.	Industrial Safety	M19UBTE08	Skill development	2020 - 2021
15.	Industrial Biotechnology and IPR	M19UBTS03	Employability	2020 - 2021
16.	Environmental Biotechnology	M19UBT09	Skill development	2020 - 2021
17.	Food Biotechnology	M19UBTE05	Employability	2020 - 2021
18.	Microbial Disease and Control	M19UBTE06	Skill development a scie	2020 - 2021 NCE COLLEG: 2021

(Autonomous)

(alippatti (PO) - 637 501, Namakkal (DT)

S.No.	Name of the Course	Course Code	Employability/ Entrepreneurship/ Skill development	2020 - 2021
19.	Pharmaceutical Biotechnology	M19UBTE07	Employability	2020 - 2021
20.	Nano-Biotechnology	M19UBTS04	Skill development	2020 - 2021
21.	Diagnostics Biotechnology	M19UBTJ01	Employability	2020 - 2021
22.	Food Process Technology	M19UBTJ02	Employability	2020 - 2021

Head of the Department HEAD OF THE DEPARTMENT

Department of Biotechnology, Mahendra Arts & Science College (Autonomous), Kalippatti (Po) - 637 501. Tiruchengode (Tk), Namakkal (Dt). Tamil Nadu. India.

AHENDRA ARTS & SCIENCE COLLEG

(Autonomous)

Kalippatti (PO) - 637 501. Namakkal (DT AHENDRA ARTS & SCIENCE COLLEC

(Autonomous)

Kalippatti (PO) - 637 501, Namakkal (DT

MAHENDRA ARTS & SCIENCE COLLEGE

(Autonomous)

Affiliated to Periyar University, Salem.

Accredited by NAAC with 'A' Grade & Recognized u/s 2(f) and 12(B) of the UGC Act 1956

Kalippatti – 637 501, Namakkal (Dt), Tamil Nadu.

BACHELOR OF SCIENCE

SYLLABUS FOR B.Sc. BIOTECHNOLOGY

OUTCOME BASED EDUCATION - CHOICE BASED CREDIT SYSTEM

For the students admitted from the

Academic Year 2019-2020 onwards ARTS & SCIENCE COLLEGE

(Autonomous)

Kalippatti (PO) - 637 501, Namakkal (DT

I. PREAMBLE

The Biotechnology programme has the linkage between basic and applied research and new discoveries and innovations can find direct applications in agriculture, human health and environment. The breakthroughs in modern biotechnology mainly include our ability to produce useful organisms through genetic engineering and cell fusion techniques and improve bioprocess technology to purify novel molecules generated by such processes. It also involves targeting drugs, development of delivery systems and vaccines. Considering this background, the syllabus document is essentially to be formulated which focused on diverse areas from Cell Biology, Biochemistry, Immunology, Plant Biotechnology, Animal Biotechnology, Genetic Engineering and Bioinformatics with significant laboratory practices which will enable the students to have hands on experience in doing experiments themselves.

II. PROGRAMME OBJECTIVE

- ❖ To empower students to excel in various research fields of Life Sciences
- ❖ To inculcate sense of scientific responsibilities and social and environment awareness
- ❖ To help students build-up a progressive and successful career
- ❖ To contribute the field of biotechnology and allied industries designing, developing and providing solutions for product development

III. PROGRAMME OUTCOMES

- 1 Graduates will gain basic knowledge of Biotechnology, Science and Technology concepts.
- 2 Graduates will be able to understand appropriate tools and techniques in biotechnological manipulation.
- 3 Graduates will be able to apply biotechnological practices in health and environmental issues.
- 4 Graduates to analyze the biological products/concepts using biotechnological tools.

IV. REGULATIONS

These regulations shall take effect from the academic year 2019-2020, i.e, for students who are to be admitted to the first year of the course during the academic year 2019-2020 and thereafter.

1. Eligibility for Admission:

Candidate for admission to the first year of the Bachelor of Science programme shall be required to have passed the Higher secondary examination (Academic or Vocational Stream) conducted by the Government of Tamil Nadu or an Examination accepted by the Syndicate, Subject to such conditions may be prescribed therefore shall be permitted to appear and qualify for B.Sc. programme examination in Biotechnology.

2. Duration of the Programme:

The programme of study of Bachelor of Science in Biotechnology shall consist of three academic years divided into six semesters with 143 credits. Each Semester consists of 90 working days.

3. Programme of Study:

The programme of study for the UG degree has been divided into the following five categories:

Part I: Tamil / Other Languages.

Part II: English Language.

Part III: Core Courses, Elective Courses and Allied Courses.

Part IV : Skill Enhancement Courses, Non-Major Elective Course, Enhancement Compulsory Courses.

Part V: Value added Courses, Extension Activity, etc.

4. Examinations:

The programme of study shall be based on semester pattern with Internal Assessment under Choice Based Credit System.

The examinations for all the papers consist of both Internal (Continuous Internal Assessment - CIA) and External (End Semester) theory examinations. The theory examinations shall be conducted for three hours duration at the end of each semester. The candidates failing in any subjects(s) will be permitted to reappear for the same in the subsequent semester examinations.

V. STRUCTURE OF THE PROGRAMME

SEMESTER: I

Part	Course	Title of the	Course Code	Hr: We	-	No. of	M	lax. Ma	ark
	Category	Course		L	P	Credits	Int.	Ext.	Total
I	LANGUAGE COURSE-I	Tamil - I / French - I / Hindi - I	M19UFA01	5	ı	3	25	75	100
II	LANGUAGE COURSE-II	English - I	M19UFEN01	5	-	3	25	75	100
III	CORE COURSE-I	Cell Biology	M19UBT01	6	-	4	25	75	100
III	ALLIED COURSE-I	Biochemistry - I	M19UBCA01	6	-	4	25	75	100
III	CORE PRACTICAL –I	Practical-I-Cell Biology	M19UBTP01	1	3	3	40	60	100
III	ALLIED PRACTICAL –I	Allied Practical-I- Biochemistry-I	M19UBCAP01	1	3	3	40	60	100
V	ENHANCEMENT COMPULSORY COURSE	Value Education - Yoga	M19UVE01	2	-	2	25	75	100
		Total		24	6	22	205	495	700

SEMESTER: II

Part	Course	Title of the	Course Code	Hr: We	•	No. of	M	lax. Ma	ark
	Category	Course		L	P	Credits	Int.	Ext.	Total
I	LANGUAGE COURSE-I	Tamil - II / French - II / Hindi - II	M19UFA02	5	-	3	25	75	100
II	LANGUAGE COURSE-II	English - II	M19UFEN02	5	-	3	25	75	100
III	CORE COURSE-II	Plant Biology	M19UBT02	6	-	4	25	75	100
III	ALLIED COURSE-II	Biochemistry - II	M19UBCA02	6	-	4	25	75	100
III	CORE PRACTICAL –II	Practical-II- Plant Biology	M19UBTP02	-	3	3	40	60	100
III	ALLIED PRACTICAL –II	Allied Practical-II- Biochemistry- II	M19UBCAP02	-	3	3	40	60	100
V	ENHANCEMENT COMPULSORY COURSE	Environmental studies	M19UES01	2	-	2	25	75	100
		Total		24	6	22	205	495	700

SEMESTER: III

Part	Course	Title of the	Course Code	Hr: We		No. of	M	ax. Ma	ark
	Category	Course		L	P	Credits	Int.	Ext.	Total
I	LANGUAGE COURSE-I	Tamil - III / French - III / Hindi - III	M19UFA03	5	-	3	25	75	100
II	LANGUAGE COURSE-II	English - III	M19UFEN03	5	-	3	25	75	100
III	CORE COURSE- III	Animal Science	M19UBT03	5	-	4	25	75	100
III	ALLIED COURSE- III	Basic Microbiology	M19UMBA01	5	-	4	25	75	100
III	CORE PRACTICAL -III	Practical-III-Animal Science	M19UBTP03	-	3	3	40	60	100
III	ALLIED PRACTICAL -III	Allied Practical-III- Basic Microbiology	M19UMBAP01	-	3	3	40	60	100
IV	SEC- I	SEC-I-Biophysics and Bioinstrumentation	M19UBTS01	2	•	2	25	<mark>75</mark>	100
IV	NMEC-I			2	-	2	25	75	100
		Total		24	6	24	230	570	800

SEMESTER: IV

Part	Course	Title of the	Course Code	Hr: We	•	No. of	M	lax. Ma	ark
1 41 6	Category	Course	Course Code		P	Credits	Int.	Ext.	Total
I	LANGUAGE COURSE-I	Tamil - IV / French - IV / Hindi - IV	M19UFA04	5	-	3	25	75	100
II	LANGUAGE COURSE-II	English - IV	M19UFEN04	5	-	3	25	75	100
III	CORE COURSE-IV	Genetics and Molecular Biology	M19UBT04	5	-	4	25	75	100
III	ALLIED COURSE-IV	Applied Microbiology	M19UMBA02	<u>5</u>	•	4	25	<mark>75</mark>	100
III	CORE PRACTICAL -IV	Practical-IV- Genetics and Molecular biology	M19UBTP04	1	3	3	40	60	100
III	ALLIED PRACTICAL -IV	Allied Practical-IV- Applied Microbiology	M19UMBAP02	1	3	3	40	60	100
IV	SEC- II	SEC-II- Bioinformatics	M19UBTS02	2		2	25	<mark>75</mark>	100
IV	NMEC-II			2	-	2	25	75	100
V	EXTENSION ACTIVITIES	Extension Activities	M19UEX01	-	-	1	-	-	-
		Total		24	6	25	230	570	800

SEMESTER: V

Part	Course	Title of the	Course	Hr: We	-	No. of	M	lax. Ma	ark
	Category	Course	Code	L	P	Credits	Int.	Ext.	Total
III	CORE COURSE-V	Immunology	M19UBT05	<mark>6</mark>	•	4	<mark>25</mark>	<mark>75</mark>	100
III	CORE COURSE-VI	rDNA Technology	M19UBT06	6	•	4	<mark>25</mark>	<mark>75</mark>	100
III	CORE COURSE- VII	Bioprocess Technology	M19UBT07	<mark>5</mark>	•	4	25	<mark>75</mark>	100
III	ELECTIVE COURSE	Elective – I	-	5	-	4	25	75	100
III	CORE PRACTICAL -V	Practical-V- Immunology and rDNA Technology	M19UBTP05	1	3	3	40	60	100
III	CORE PRACTICAL -VI	Practical-VI- Bioprocess Technology	M19UBTP06	ı	3	3	40	60	100
IV	SEC- III	Industrial Biotechnology and IPR	M19UBTS03	2	-	2	25	75	100
		Total		24	6	24	205	495	700

SEMESTER: VI

Part	Course	Title of the	Course		rs/ eek	No. of	M	ax. Ma	rk
	Category	Course	Code	L	P	Credits	Int.	Ext.	Total
III	CORE COURSE- VIII	Plant and Animal Biotechnology	M19UBT08	4	-	4	25	75	100
III	CORE COURSE-IX	Environmental Biotechnology	M19UBT09	4		4	<mark>25</mark>	<mark>75</mark>	100
III	ELECTIVE COURSE	Elective – II	-	4	-	4	25	75	100
III	CORE PRACTICAL -VII	Practical-VII- Plant and Animal Biotechnology	M19UBTP07	ı	4	3	40	60	100
III	CORE PRACTICAL -VIII	Practical-VIII- Environmental Biotechnology	M19UBTP08	-	4	3	40	60	100
III	CORE PROJECT	Project	M19UBTPR1	1	4	3	40	60	100
IV	SEC- IV	Nano- biotechnology	M19UBTS04	2		2	<mark>25</mark>	<mark>75</mark>	100
V	SC-I-JOC	Self Employment Courses		4	-	<mark>3</mark>	<mark>25</mark>	<mark>75</mark>	<mark>100</mark>
V	Swayam	МООС		-	-	-	-	-	-
			Total TOTAL	18	12	26	245	555	800
			13 8	42	143*	132 0	318 0	4500	

*The students will gain extra credits for successful completion of online courses from SWAYAM / MOOC.

Summary of Credits, Hours and Mark Distribution

			No	o. of (Cred	its		Total	Total	No. of	Max.
Part	Course Name	I	II	III	IV	v	VI	Credits	Hours	Courses	Marks
I	Language - I	3	3	3	3	-	-	12	20	4	400
II	Language - II	3	3	3	3	-	-	12	20	4	400
	Core	4	4	4	4	12	8	36	47	9	900
	Core Practical	3	3	3	3	6	6	24	26	8	800
III	Elective	-	-	-	-	4	4	8	9	2	200
	Project	-	-	-	-	-	3	3	4	1	100
	Allied	4	4	4	4	-	-	16	22	4	400
	Allied Practical	3	3	3	3	-	-	12	12	4	400
	SEC	-	-	2	2	2	2	8	8	4	400
IV	NMEC	-	-	2	2	-	-	4	4	2	200
	Enhancement Compulsory Courses	2	2	-	-	-	-	4	4	2	200
v	Self Employment Courses	-	1	1	1	-	3	3	4	1	100
	Extension Activities	-	-	-	1	-	-	1	-	1	-
	Total	22	22	24	25	24	26	143*	180	46	4500

^{*}The students will gain one extra credit for successful completion of online courses from SWAYAM / MOOC.

ALLIED SUBJECTS FOR B.Sc., BIOTECHNOLOGY STUDENTS

Semester	Subject	Course Code
I	Biochemistry – I	M19UBCA01
II	Biochemistry – II	M19UBCA02
III	Basic Microbiology	M19UMBA01
IV	Applied Microbiology	M19UMBA02

ALLIED SUBJECTS OFFERED FOR OTHER MAJOR STUDENTS

Semester	Subject	Course Code
I	Biochemistry – I	M19UBCA01
II	Biochemistry – II	M19UBCA02

ELECTIVE SUBJECTS FOR B.Sc. BIOTECHNOLOGY STUDENTS

Semester	ELECTIVE - I			
	Course Title	Course Code		
V	Bioethics and Bio-safety	M19UBTE01		
V	Developmental Biology	M19UBTE02		
	Nursery and gardening	M19UBTE03		
	Herbal Technology	M19UBTE04		
	ELECTIVE – II			
	Course Title	Course Code		
VI	Food Biotechnology	M19UBTE05		
V I	Microbial Disease and Control	M19UBTE06		
	Pharmaceutical Biotechnology	M19UBTE07		
	Industrial Safety	M19UBTE08		

SKILL ENCHANCEMENT COURSES

Semester	Course Title	Course Code
III	Biophysics and Bioinstrumentation	M19UBTS01
IV	Bioinformatics	M19UBTS02
V	Industrial Biotechnology and IPR	M19UBTS03
VI	Nano-biotechnology	M19UBTS04

SELF EMPLOYMENT COURSES

Semester	Course Title	Course Code
371	Diagnostic Biotechnology	M19UBTJ01
VI	Food process Technology	M19UBTJ02

NON - MAJOR ELECTIVE COURSES: [FOR OTHER DEPARTMENTS]

Semester	Course Title	Course Code
111	1. Health and Hygiene	M19NBT01
III	2. Food and Nutrition	M19NBT02
13.7	1.Entrepreneurship in Biotechnology	M19NBT03
IV	2.Agricultural Biotechnology	M19NBT04

VI. SCHEME OF EXAMINATION

1. Question Paper Pattern for Theory Examination

Time: Three Hours Maximum Marks: 75

Part A: $(10 \times 1 = 10)$

Answer ALL Questions

(Objective Type - Two Questions from each unit)

Part B: $(5 \times 2 = 10)$

Answer ALL Questions (One Question from each unit)

Part C: $(5 \times 5 = 25)$

Answer ALL Questions

(One Question from each unit with internal choice)

Part D: $(3 \times 10 = 30)$

Answer Any Three out of Five Questions (One Question from each unit)

2. Question Paper Pattern for Practical Examination

Time: Six Hours Maximum Marks: 60

QUESTION PATTERN

Major Practical	=	20 Marks
Minor Practical	=	10 Marks
Spotters (5X4=20)	=	20 Marks
Viva Voce	=	05 Marks
Record	=	05 Marks
Total	=	60 Marks

3. Distribution of Marks:

The following are the distribution of marks for external and internal for End Semester Examinations and continuous internal assessment and passing minimum marks for Theory / Practical / Mini project / Project papers of UG programmes.

EndSE	EA Total	Passing Minimum for EA	CIA Total	Passing Minimum for CIA	Total Marks Allotted	Passing Minimum (ESE)
Theory	75	30	25	10	100	40
Practical	60	24	40	16	100	40
Project	60	24	40	16	100	40

The following are the Distribution of marks for the Continuous Internal Assessment in Theory / Practical papers of UG programmes.

THEORY

EVALUATION OF INTERNAL ASSESSMENT

Test : 15 Marks Assignment : 05 Marks Attendance : 05 Marks

Total: 25 Marks

The Passing minimum shall be 40% out of 25 marks (10 marks)

PRACTICAL

EVALUATION OF INTERNAL ASSESSMENT

Test 1 : 15 Marks Attendance : 15 Marks Observation: 10 Marks

Total : 40 Marks

The Passing minimum shall be 40% out of 40 marks (16 marks)

PROJECT

EVALUATION OF INTERNAL ASSESSMENT

Review 1 : 10 Marks
Review 2 : 10 Marks
Review 3 : 10 Marks
Pre-Viva : 10 Marks

: 40 Marks

The Passing minimum shall be 40% out of 40 marks (16 marks)

4. Passing Minimum:

Total

The Candidates shall be declared to have passed the examination if he/she secures not less than 40 marks in total (CIA mark + Theory Exam mark) with minimum of 30 marks in the End Semester Theory Examinations.

The Candidates shall be declared to have passed the examination if he/she secures not less than 40 marks in total (CIA mark + Practical Exam mark) with minimum of 24 marks in the End Semester Practical Examinations.

5. Submission of Record Note Books for Practical Examinations

Candidates appearing for practical examinations should submit a bonafide record note books prescribed for practical examinations. The candidates failed to submit the record book shall not be permitted to appear for the practical examinations.

6. Project

The following guidelines to be followed for the Project with Viva-voce:

- 1. The project should be valued for 60 marks by an external examiner; however the Viva-Voce examination should be conducted by both the external examiner appointed by the College and the internal examiner/supervisor/teacher concerned.
- 2. The Project Report may consist of minimum of 60 pages.
- 3. The candidate has to submit the Project Report 20 days before the commencement of the VI Semester Examinations.
- 4. A candidate who fails in the Project/Dissertation or is absent may resubmit the report, on the same topic, with necessary modification / correction / improvements in the subsequent Even Semester Examinations for evaluation and shall undergo viva-voce Examination.

VII. NOTE

SWAYAM / MOOC - Free Online Education

SWAYAM / MOOC is an instrument for self-actualization providing opportunities for a life-long learning. Here the student can choose from hundreds of courses, virtually every course taught at the college level, offered by the best teachers in India and elsewhere.

The students can choose an online SWAYAM / MOOC course during their period of study which will earn an extra credit and it will be transferred to the academic records of the students.

SEMESTER I

Core - I	B.Sc. Biotechnology 2019 - 202	
Code: M19UBT01	CELL BIOLOGY	
Credit: 4	CLLL DIOLOGI	

Objectives

To understand the structure and the functions of prokaryotic and eukaryotic cells.

To study about specialized cells and cell organelles.

To impart knowledge about cell division and structural organization of chromosomes.

To study about the cell signaling pathways.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Describe the fundamental principles of cell structure, organization, cell division and signaling.	K1
CO2	Understand the structure and function of cellular components, organelles, chromosome, cell signaling pathway.	K2
CO3	Explain the process events of cell Division, cell cycle and cell adhesions.	КЗ
CO4	Classify prokaryotic and eukaryotic cell structure and its functions with suitable examples.	K4

UNIT- I

Introduction and history of cell biology. Ultra-structure of plant, animal and bacterial cell. Difference between prokaryotes and eukaryotes. Difference between Plant and Animal cells

UNIT-II

Structure and function of cell organelles: Cell wall, cell membrane, Chloroplast, mitochondria.

UNIT -III

Structure and function of Endoplasmic reticulum, Golgi complex, Peroxisomes, lysosome and vacuoles. Specialized cell organelles: cilia and flagella.

UNIT- IV

Structure and function of Nucleus, ribosome, Chromosomes and cell division: Morphology, Structural organization, ultra-structure of chromosome, specialized chromosomes. Cell cycle, Mitosis and Meiosis.

UNIT-V

Cell-Cell adhesion, Cell signaling- types- G Protein Ras, Raf pathway. Cell staining methods.

TEXT BOOKS:

C No	Title of the Dools	Author	Dublishing Company	Year of
S. No.	Title of the Book	Author Publishing Compan		Publication
1	A Text Book of	Aminul	Books and Allied (P)	2011
1.	Cell Biology	Islam	Ltd, Kolkatta.	2011
2.	Cell Biology First	Daywan C.D.	Himalaya publishing	1002
۷.	edition	Powar. C.B	house, New Delhi.	1983

REFERENCE BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	05.	Verma P S and Agarwal V K	S Chand	2006
2	and Ecology Cell Biology	Kimball T W	Brown (William C.) Co U.S.	1994
3	Cell Biology	T Devasena	Oxford University Press,	2012
4	Cell Biology and Molecular Biology	N Arumugam	Saras Publication	2011

Mapping with Programme Outcomes

Cos	P01	P02	PO3	P04
CO1	S	M	M	M
CO2	S	M	M	S
CO3	M	S	S	S
CO4	S	S	S	M

S- Strong; **M**-Medium.

SEMESTER I

Allied - I	B.Sc. Biotechnology 2019 - 20		
Code: M19UBCA01	BIOCHEMISTRY - I		
Credit: 4			

Objectives

To study the structure and function of biomolecules (proteins, lipids, and carbohydrates) found in living cells.

To provide fundamental knowledge and overview about enzymes and nucleic acids.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Describe the structures of Carbohydrates, amino acids and enzymes.	K1
CO2	Understand the biological functions and properties of bio-molecules.	K2
CO3	Explain the bio chemical compounds in the cells and organelles.	К3
CO4	Classify the significance of essential and non essential amino acids, fatty acids and it's applications in living systems.	K4

UNIT-I

Introduction to Biochemistry: Concept of acids and bases. Buffers - Definition and determination of pH, Henderson Hasselbach Equation, Lab Solutions Preparation (Molarity, Molality, Normality and percentage solutions).

UNIT-II

Carbohydrates: Introduction, classification, monosaccharidestructure, stereoisomers and structural isomers, mutarotation, and chemical reactions. Oligosaccharides – Dissaccharides - structure and importance of sucrose, Lactose, maltose. Polysaccharides - structure and importance of homopolysaccharides and heteropolysaccharides.

UNIT-III

Amino acids: Classification, Essential & Non-essential amino acids, structure and properties. Protein: Definition, classification and functions – structural levels of organization.

UNIT -IV

Enzymes – Definition, classification with example, active site, lock & key model, induced fit hypothesis. Enzyme units – kinetics- factors affecting enzyme activity.

UNIT-V

Classification of Lipids and fatty acids, physical & Chemical properties of fatty acids. Components of nucleic acid - Nitrogenous bases, pentose sugar and phosphoric acid. Nucleoside and nucleotides.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1	Fundamentals of	J L Jain, Sunjay	S. Chand publications	2016
1.	Biochemistry	Jain, Nitin Jain	5. Chana publications	2010
2.	Essentials of	II Cathyan anayanan	Books and allied (p)	2002
۷.	Biochemistry	U. Sathyanarayanan	Ltd.	2002

REFERENCE BOOKS:

S. No.	Title of the Book	Author	Publishing	Year of
J. 140.		Author	Company	Publication
1.	Harper's Biochemistry	Robert K. Murray, Daryl K. Granner, Peter A. Mayes, Victor W. Rodwell	Prentice Hall International. Inc	2006
2.	Fundamentals of Biochemistry	Donald Voet, Judith G.Voet and Charlotte W Pratt	John Wiley & Sons, NY	1999
3.	Biochemistry	Jeremy M. Berg, Lubert Stryer, John L. Tymoczko, Gregory J. Gatto	WH Freeman	2015
4.	Lehninger Principles of Biochemistry	David L. Nelson, Michael Cox	A John Wiley, In.	1997

Mapping with Programme Outcomes

Cos	P01	P02	PO3	P04
CO1	M	M	M	S
CO2	M	M	S	S
CO3	S	S	M	M
CO4	S	S	S	S
CO5	S	M	S	S

S- Strong; **M**-Medium.

SEMESTER I

Core: Practical-I	B.Sc. Biotechnology	2019 - 2020	
Code: M19UBTP01	PRACTICAL - I - CELL BIOLOGY		
Credit: 3	1141011012 1 0222 210	2001	

Objectives

To provide better practical knowledge and training on microscopes, cell counting methods, and staining of macromolecule in plant and animal cells.

- 1. Microscopes and its parts.
- 2. Micrometry Stage and Ocular Micrometer
- 3. Cell Counting Haemocytometer.
- 4. Mounting buccal epithelium and observing living cells using vital staining.
- 5. Mitosis in Onion root tip squash.
- 6. Meiosis grasshopper testis squash/Anther of *Tradescantia* sp. flower.
- 7. Salivary gland squash preparation in Chironomous larvae for identification of giant Chromosome.
- 8. Staining of storage molecules Carbohydrates and Lipids
- 9. Observation of slides (Cardiac muscle, Sperm cell, Muscle cell)
- 10. Microtomy (Demo).

TEXT BOOK:

S. No.	Title of the	Author	Publishing Company	Year of
	Book			Publication
1.	Cell Biology :	Renu Gupta,		
	Practical	SeemaMakhija,	Prestige	2018
	Manual	Dr. Ravi Toteja		

REFERENCE BOOK:

S. No.	Title of the Book	Author	Publishing Company	Year of Publicat ion
1.	Cell Biology, Genetics, Molecular Biology, Evolution and Ecology	Verma P S and Agarwal V K	S Chand	2006
2.	Cell Biology	Kimball T W	Brown (William C.) Co ,U.S.	1994
3.	Cell Biology	T Devasena	Oxford University Press,	2012
4.	Cell Biology and Molecular Biology	N Arumugam	Saras Publication	2011

SEMESTER - I

Allied Practical- I	B.Sc. Biotechnology 2019 - 2020		
Code: M19UBCAP01	ALLIED PRACTICAL - I - BIOCHEMISTRY-I		
Credit: 3			

Objectives

To provide practical knowledge on extraction of starch, casein, and lecithin from biological samples.

To perform the qualitative analysis carbohydrate and protein samples.

To determine the acid and saponification number of fat and salivary amylase enzyme activity.

- 1. Preparation of buffer solution (Phosphate, Acetate and Citrate) and determination of pH.
- 2. Estimation of starch from potato.
- 3. Preparation of casein from milk.
- 4. Determination of Acid number.
- 5. Determination of specific activity of salivary amylase enzyme
- 6. Estimation of ascorbic acid by 2,6 Dichloro phenol Indophenol method

SPOTTERS

- 1. pH Meter
- 2. pH Paper
- 3. Monosaccharides Glucose, Fructose, Galactose, Ribose
- 4. Disaccharides Sucrose, Lactose, Maltose
- 5. Polysaccharide Starch, Cellulose
- Aminoacids Glycine, Serine, Cysteine, Histidine, Aspartic acid,
 Tyrosine
- 7. Nitrogenous Bases Adenine, Guanine, Thymine, Cytosine, Uracil
- 8. Lipids Lecithin, Cephalin, Plasmalogen, Ganglioside.

TEXT BOOKS:

S. No.	Title of the	Author	Publishing	Year of
	Book	Author	Company	Publication
	Introductory	CV Combner	Alpha Caiongo	
1.	Practical	S.K. Sawhney,	Alpha Science	2005
	Biochemistry	R. Singh	International Ltd	

REFERENCE BOOKS:-

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	An Introduction To Practical Biochemistry	David Plummer	Tata McGraw Hill Education	2006
2.	Laboratory Manual For Practical Biochemistry	Shivaraja Shankara	Jaypee Brothers Medical Publishers	2013
3.	Practical Biochemistry	Damodaran Geetha K	Jaypee Brothers Medical Publishers	2016

SEMESTER - I

Value Education	B.Sc. Biotechnology 2019 - 202	
Code: M19UVE01	kdtsf;fiy Nahfh	
Credit: 2		

பாடநோக்கம்

இளம் வயது முதல், உடல், மனம் இரண்டையும் பக்குவமாக வைத்துக் கொள்ள வேண்டியதன் அவசியத்தை மாணவர்களுக்கு உணரச் செய்தல்.

அலகு 1

யோகமும் உடல்நலமும்

உடலமைப்பு – எளியமுறை உடற்பயிற்சி – மகராசனம் - யோகாசனங்கள்

அலகு 2

இளமைகாத்தல் - பாலுணர்வும் ஆன்மீகமும் - மனதின் 10 படிநிலைகள் - மன அலைச்சுழல்.

அலகு 3

குணநலப்பேறு

வாழ்வின் நோக்கம் - எண்மை ஆராய்தல் - ஆசை சீரமைத்தல் - சினம் தவிர்த்தல்.

அலகு 4

கவலை ஒழித்தல் - வாழ்த்தும் பயனும் - நட்பு நலம் - தனிமனித அமைதி.

அலகு 5

செயல்விளைவுத் தத்துவம் - மனத்தூய்மை, வினைத்தூய்மை — அன்பும் கருணையும் - பண்பாட்டுக் கல்வி.

பாடநூல்: 'மனவளக்கலை யோகா'

உலக சமுதாய சேவா சங்கம்

வேதாத்திரி பதிப்பகம்

156, காந்திஜி ரோடு

жСут(6) - 638 001.

போன்: 0424 — 2263845.

பார்வை நூல்கள்:

மனவளக்கலை யோகா –I - உலக சமுதாய சேவா சங்கம்

மனவளக்கலை யோகா –II- வேதாத்திரி பதிப்பகம்

மனவளக்கலை யோகா –III-156, காந்திஜி ரோடு

எளிமுறை உடற்பயிற்சி - ஈரோடு — 638 001.

யோகப்பயிற்சிகள் - போன்: 0422-2263845

SEMESTER II

Core - II	B.Sc. Biotechnology 2019 - 201	
Code: M19UBT02	PLANT BIOLOGY	
Credit: 4		

Objectives

To understand classification systems of plants, structure and modifications of root, stem, leaf and flowers.

To impart specific knowledge on pathways involved in plant systems and fertilization takes place in plants.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Describe the fundamental principles plant biology and classification systems up to class level.	K1
CO2	Understand the structure, modifications of root, stem, leaf and types of flowers, fruits, seeds.	K2
CO3	Apply the concepts of fertilization and methods of pollinations.	К3
CO4	Analyze the taxonomy structure, plant microbial interactions, and the role of electrons in photosynthesis.	K4

UNIT-I

History and Classification of Plant taxonomy: Natural & Artificial (Linnaeus) – Two Kingdom and Five Kingdom System of classification. General outlines of Bentham and Hooker's classification. Economic importance of following families: Anonaceae, Fabaceae, Apocynaceae, Euphorbiaceae and Musaceae.

UNIT-II

Structure and modifications of Root, Stem and Leaf, Phyllotaxy - Structure and types of Inflorescences - Structure and types of flowers, fruits and seeds.

UNIT-III

Tissue and tissue systems – Meristem: types of meristem- Shoot and root apical meristem - anatomy of monocot and dicot roots, stems and leaves. Plant - Microbe interaction – Endophytic fungi.

UNIT-IV

Absorption of Water and movement - Diffusion, Osmosis, Plasmolysis, Mechanism of Stomatal opening and closing. Photosynthesis – significance – electron transport system – cyclic and non-cyclic photophosphorylation – C3 and C4 pathways.

UNIT-V

Modes of Reproduction in Angiosperms - Vegetative propagation - Sexual Reproduction: Structure of mature anther, Structure of mature Ovule and its types. Pollination: types – Double fertilization - Development of male and female gametophytes - Development of Dicot Embryo.

REFERENCES BOOKS:

S. No.	Title of the Book	Author	Dublishing Company	Year of
3. NO.	Title of the book	Autiloi	Publishing Company	Publication
1.	Plant Physiology	Pandey, S.N.	Tata McGraw Hill	
			Publishers (P) Ltd., New	1991
			Delhi.	
2.	A Text Book of	Verma, V.,	Emkay Publications, New	
	Plant Physiology		Delhi	1991
3.	Introduction to	Sivarajan,	Oxford & IBH	
	Principles of Plant	V.V	Publishing Co., New	1993
	Taxonomy		Delhi.	
4.	Economic Botany	Sen, S	New Central Book	1992
			Agency,Calcutta.	
5.	Morphology of	Earnes, A.J	Tata McGraw Hill	
	Lower Vascular		Publishing Co., New	1936
	Plants.		Delhi	
6.	Plant Anatomy	Esau, K	Wiley Eastern Private	1960

Limited. New Delhi.

Mapping with Programme Outcomes

Cos	P01	P02	P03	P04
CO1	M	S	S	M
CO2	S	M	M	M
CO3	M	M	S	S
CO4	S	M	S	M

S- Strong; **M**-Medium.

SEMESTER II

Allied - II	B.Sc. Biotechnology 2019 - 202	
Code: M19UBCA02	Allied - II - BIOCHEMISTRY	- II
Credit: 4	Ameu - II - Blochemistri - II	

Objectives

To provide knowledge about the synthesis and metabolisms of biomolecules, metabolic pathways and their regulations in living cells.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Describe the concepts of thermodynamics and metabolism	K1
CO2	Understand the thermodynamic principles and mechanisms in respiration.	K2
CO3	Apply various metabolic pathways and their control mechanisms. Role of vitamins and hormones in cell metabolisms	К3
CO4	Analyze the nature of the carbohydrate, protein, lipids and vitamins cell metabolisms	K4

UNIT-I

Bioenergetics- Laws of Thermodynamics, Redox potential, Respiratory chain, Oxidative phosphorylation (Theories and Mechanism).

UNIT-II

Carbohydrate metabolism - Glycolysis, Pyruvate Oxidation and Citric acid cycle HMP shunt, Gluconeogenesis, Glycogenesis, Glycogenolysis.

UNIT-III

Protein metabolism - Transamination, oxidative and non-oxidative deamination, decarboxylation - urea cycle. Nucleic acid metabolism - Denova and salvage pathway.

UNIT-IV

Lipid metabolism- Biosynthesis of fatty acids and Oxidation of fatty acids (alpha, beta and omega oxidation). Cholesterol Biosynthesis.

UNIT-V

Vitamins: Classification, occurrence, deficiency symptoms, and biochemical functions of fat soluble and water soluble Vitamins. Hormones – Definition, Classification of Hormones, Biological function and disorders of Hormones - Insulin, thyroxine, adrenaline and nor-adrenaline.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Fundamentals of	J.L. Jain	S.Chand publications	2004
1.	Biochemistry			2004.
2.	Schaum's Outline	Philip W Kuchel	Schaum's Outlines	1997
۷.	of Biochemistry	Fillip W Kuchei	Schaum S Outilles	1997

REFERENCE BOOKS:

S. No.	Title of the Book	Author	Publishing	Year of	
0	21010 01 0110 20011		Company	Publication	
1.	Harper's Biochemistry	Robert K. Murray, Daryl K. Granner, Peter A. Mayes, Victor W. Rodwell	Prentice Hall International. Inc	2006	
	Fundamentals of	Donald Voet, Judith	John Wiley &		
2.	Biochemistry	G.Voet and Charlotte W Pratt	Sons, NY	1999	
3.	Lehninger Principles of Biochemistry	David L. Nelson, Michael M. Cox	W H Freeman & Co	2017	
4.	Biochemistry	Christopher K. Mathews, K. E. Van Holde , Dean R. Appling	Pearson College Div	2012	

Mapping with Programme Outcomes

Cos	P01	P02	P03	P04
CO1	M	M	M	S
CO2	S	M	M	S
CO3	M	S	M	M
CO4	M	M	S	S

S- Strong; **M**-Medium.

SEMESTER II

Core Practical-II	B.Sc. Biotechnology	2019 - 2020
Code: M19UBTP02	PRACTICAL - II - PLANT BIOLOGY	
Credit: 3		

Objectives

To understand different plant families description on its morphology, and LS and CS of monocot, dicot. the concept of osmosis and photosynthesis of oxygen evolution by hands on training.

- 1. Description of plant family Anonaceae, Fabaceae, Apocynaceae, Euphorbiaceae & Musaceae.
- 2. Observation of Plant Morphology.
- 3. Primary T.S of Monocot and Dicot stem, root, leaf.
- 4. Osmosis, Plasmolysis and Photosynthesis by O₂ evolution.
- 5. Dissection of embryo.

REFERENCE BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Plant biology laboratory manual	Graham, wilcox	Benjamin Cummings	2006
2.	Plant biology laboratory manual	Dr. Peter LEE	Lakehead University	2014
3.	Laboratory Manual for Stern's Introductory Plant Biology	James Bidlack and Shelley Jansky and Kingsley Stern	McGraw-Hill Education	2018

SEMESTER II

Allied Practical - II	B.Sc. Biotechnology	2019 - 2020	
Code: M19UBCAP02	ALLIED PRACTICAL - II - BIOCHEMISTRY - I		
Credit: 3			

Objectives

To give hands on training on qualitative analysis of biomolecules, paper chromatography, thin layer chromatography and quantitative titration and colorimetric methods to determine the amount of biomolecules in the sample.

- 1. Qualitative analysis of carbohydrates
- 2. Qualitative analysis of amino acids
- 3. Estimation of amino acid by formal titration method
- 4. Estimation of reducing sugar by DNS method
- 5. Estimation of protein by Biuret method
- 6. Estimation of cholesterol by Zak's method
- 7. Separation of amino acid by paper and thin layer chromatography

SPOTTERS

- 1. Paper Chromatography Ascending, Descending, Radial
- 2. Thin Layer Chromatography
- 3. Column Chromatography
- 4. Endocrine Glands Pituitary, Thyroid, Adrenal, Pancrease
- 5. Thyroid Hormone Disorders Goiter, Graves Disease, Myxedema
- 6. Growth Hormone Disorder Gigantism, Acromegaly

TEXT BOOKS:

S. No.	Title of the	Author	Publishing Company	Year of
	Book			Publication
	Practical			
1.	Clinical	Harold Varley	CBS publications	2005
	Biochemistry			

REFERENCE BOOKS:-

S. No. Title of the Author Publishing Year of

	Book		Company	Publication
1.	An Introduction To Practical Biochemistry	David Plummer	Tata McGraw	2006
2.	Laboratory Manual For Practical Biochemistry	Shivaraja Shankara	Jaypee Brothers Medical Publishers	2013
3.	Practical Biochemistry	Damodaran Geetha K	Jaypee Brothers Medical Publishers	2016

SEMESTER II

ECC-I	B.Sc. Biotechnology	2019 - 2020	
Code: M19UES01	ENVIRONMENTAL STUDIES		
Credit: 2			

Objectives

This course provides the basic idea about our environment ecosystem, natural resources, pollution and environmental policies and practices.

Course Outcomes

After completing this course, students will be able to:

CO Number	CO Statement	Knowledge Level
CO1	Describe the natural resources, conventional and non-conventional sources of energy and their advantages and disadvantages.	K1
CO2	Understand the environment in terms of ecosystem and its structural and functional aspects.	K2
CO3	Apply the knowledge about various concepts and issues in the environment including biodiversity conservation	КЗ
CO4	Analyze the various types of pollution, pollutants, nuclear and natural hazards. It emphasis on human health impact, mitigation measures and implementation of environmental Acts for control of pollution.	К4

UNIT-I

Environment – definition – scope – structure and function of ecosystems- producers, consumers and decomposers - energy flow in the ecosystem - ecological succession – food chain, food webs and ecological pyramids – concept of sustainable development.

UNIT-II

Natural resources: renewable - air, water, soil, land and wildlife resources. Non - renewable - mineral coal, oil and gas. Environmental problems related to the extraction and use of natural resources.

UNIT-III

Biodiversity – definition – values – consumption use, productive social, ethical, aesthetic and option values threats to bio diversity – hotspots of bio diversity – conservation of bio - diversity: *in - situ, ex - situ*. Bio – wealth - National and global level.

UNIT-IV

Environmental Pollution: definition – causes, effects and mitigation measures – air pollution, water pollution, soil pollution noise pollution, thermal pollution – nuclear hazards– solid wastes, acid rain – climate change and global warming. Environmental laws and regulations in India.

UNIT-V

Social Issues and the Environment - urban problems related to energy. Water conservation, rain water harvesting, watershed management, wasteland reclamation, Environment Protection Act- Air (Prevention and Control of Pollution) Act. Water (Prevention and Control of Pollution) Act, wildlife Protection Act, forest Conservation Act.

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Textbook for Environmental Studies for Undergraduate Courses of all branches of higher education	Erach Bharucha	University Grants Commission and bharatividya peeth institute of environment education and research, Pune	2004
2.	Environmental Studies	Anubha Kaushik	New Age International Publishers, NewDellhi	2012
3.	Environmental Studies for Undergraduate Courses - As Per UGC Notified	Sushmita Baskar and R. Baskar	Unicorn Books Publishers	2007
4.	Syllabus Textbook of Environmental Studies for Undergraduate Courses	Erach Bharucha	Second edition Orient Black Swan Publishers	2013

REFERENCE BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Environmental	K.C. Agarwal	Nidhi	
	Pollution:		Publishers (India),	
	Causes,		Bikanir.	2001
	Effects and			
	Control.			
2.	Essentials of	S.V.S.Rana	Prentice Hall of	
	Ecology and		India Private	2005
	Environmental		Limited, New	2005
	Sciences		Delhi, India.	
3.	Modern	H.D.Kumar	Vikas Publishing	
	Concepts of		House Private	1982
	Ecology		Ltd.	
4.	Environmental	Sanjay Kumar	Taxmans	
	Studies	Batra, Kanchan	publication	
		Batra, Harpreet		2018
		Kaur and Parul		
		Pant		
5.	Ecology: From	Michael Begon,	Blackwell	
	Individuals to	Colin R. Townsend,	Publishing	2006
	Ecosystems	and John L. Harper	company	

Mapping with Programme Outcomes

Cos	P01	P02	P03	P04
CO1	M	S	S	M
CO2	S	M	M	S
CO3	M	S	M	S
CO4	S	S	S	M

SEMESTER III

Core - III	B.Sc. Biotechnology	2019 - 2020		
Code: M19UBT03	ANIMAL SCIENCE			
Credit: 4	ANIMAL SCILINGE			

Objectives

To understand the animal classification, taxonomy, diversity, structure and functions of the organ and organ systems.

Course Outcomes

After completing this course, students will be able to:

CO Number	CO Statement	Knowledge Level
CO1	Describe the classification and nomenclature of invertebrates and vertebrates	K1
CO2	Understand the types, structure and functions of animal tissues	К2
CO3	Judge anatomy and physiology of different systems	КЗ
CO4	Categorize the reproduction and fertilization changes	К4

UNIT-I

Classification: concept of species; binomial nomenclature; Salient features, classification and detailed study of invertebrates and vertebrates up to class level.

UNIT-II

Animal tissue - epithelium (covering), connective (support), muscle (movement) and nervous (control).

UNIT-III

Anatomy and physiology of different systems - digestive, circulatory, respiratory, endocrine and excretory system of human beings.

UNIT-IV

Modes of reproduction-Asexual and sexual reproduction; Modes-Binary fission, sporulation, budding, gemmule, fragmentation. Gametogenesis - spermatogenesis and oogenesis; Menstrual cycle; Fertilization and post-fertilization changes.

UNIT-V

Concept of biodiversity; patterns of biodiversity; importance of biodiversity; loss of biodiversity; biodiversity conservation; hotspots, endangered organisms, extinction, biosphere reserves, national parks and sanctuaries.

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Invertebrate Zoology	N.C Nair, S. Leelavathy, N Arumugam, N. Soundara Pandian	Saras Publications A.R. Camp Road, Periyavilai, Kottar Post, Nagercoil, Tamil Nadu 629002	2013
2.	Chordate Zoology	A. Thangamani, S.Prasannakumar, N.Arumugam and L.M.Narayanan	Saras Publications A.R. Camp Road, Periyavilai, Kottar Post, Nagercoil, Tamil Nadu 629002	2013
3.	Text book of Invertebrates	N.C Nair, S. Leelavathy, N Arumugam, N. Soundara Pandian	Saras Publications A.R. Camp Road, Periyavilai, Kottar Post, Nagercoil, Tamil Nadu 629002	2010
4.	Invertebrate Zoology	E.L.Jordan and P.S.Verma	S.Chand & Co., Ltd, New Delhi	2011
5.	Animal Physiology	P.S. Verma, B.S. Tyagi and V.K. Agarwal	S. Chand & Co, New Delhi	2000

			Saras Publications	
	Animal	Mariakuttikan A	A.R. Camp Road,	
6.	Physiology	and Arumugam N,	Periyavilai, Kottar Post,	2017
	Filysiology	anu Arumugam N,	Nagercoil, Tamil Nadu	
			629002	

REFERENCE BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Vertebrate Life	Pough F. Harvey	Prentice Hall, Inc.	2013
2.	Biology of Invertebrates	Pechenik	McGraw-Hill Publishing Company	2015
3.	Biological Science	Scott Freeman	Prentice Hall, Inc.	2014
4.	Animal Structure and Function	Starr	Brooks/Cole Publishing Co.	2013
5.	Wildlife Biology	Raymond F. Dasmann	John Wiley & Sons, Inc.	1981
6.	General and Comparative physiology	Hoar, W.S	PrenticeHall, Inc.	1987
7.	Campbell Biology	Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky and Robert B. Jackson	Pearson India Education Services Pvt. Ltd.Bengaluru, 560025.	2013
8.	General and Comparative Animal Physiology,	WilliamS.Hoar,	Prentice Hall, India	1975
9.	Animal Physiology,	RichardW, Gordon, A AndMargaret A.	Sinauer Associates, USA.	2012

Mapping with Programme Outcomes

Cos	P01	PO2	PO3	P04
CO1	M	M	S	S
CO2	S	M	M	S
CO3	M	S	M	S
CO4	S	S	S	M

SEMESTER III

Allied -III	B.Sc. Biotechnology 2019 - 2020	
Code: M19UMBA01	ALLIED - III - BASIC MICROBI	OLOGY
Credit: 4		

Objectives

The main objective of the course is to provide knowledge on the understanding of the concepts and fundamental principles of microbiology and basis to face the study of the bacteriology, virology, Phycology and Mycology which includes key features of the structure, growth, physiology and behavior of bacteria, viruses, fungi, algae and protozoa.

Course Outcomes

On the successful completion of the course, students will be able to

СО	CO Statement	Knowledge
Number		Level
CO1	Describe the history, development and	K1
301	the basic principles of microbiology	111
	Understand the microbial diversity,	
CO2	Systems of Classification taxonomy and	K2
	dynamics of microbes	
CO3	Apply the knowledge about various types	К3
300	of microbes and its structural aspects	
CO4	Identify the pathogenic microbes,	K4
	pathogenesis and its prevention measures	11.1

UNIT-I

Introduction and History of Microbiology. Spontaneous generation vs biogenesis. Establishment of fields of medical microbiology, immunology and environmental microbiology with special reference to the work of following scientists: Anton von Leeuwenhoek, Joseph Lister, Paul Ehrlich, Edward Jenner, Louis Pasteur, Robert Koch, Beijerinck, Sergei N. Winogradsky, Alexander Fleming, Selman A. Waksman, Elie Metchnikoff.

UNIT-II

General characteristics of Bacteria, Systems of classification, Numerical taxonomy, Bergey's Manual of Systematic Bacteriology (up to section level), Classification of bacteria on the basis of Nutritional types, Environmental factors. General characteristics of Archaebacteria, Rickettsia, Mycoplasma, Cyanobacteria and Actinomycetes.

UNIT-III

General characteristics of algae including occurrence, thallus organization, algae cell ultra-structure, pigments, flagella, eyespot, food reserves and vegetative, asexual and sexual reproduction. Different types of life cycles in algae: Haplobiontic, Haplontic, Diplontic, Diplobiontic and Diplohaplontic life cycles.

UNIT-IV

General characteristics of fungi including habitat, distribution, nutritional requirements. Fungal cell ultra-structure, mycelium and hypae organization and aggregation. Multicellular organization. Sexual and asexual reproduction. Yeast reproduction – budding.

UNIT-V

General introduction, characteristics and life cycle of viruses with special reference to the structure of the following: TMV, poliovirus, T4 and λ -phage, lytic and lysogenic cycles.

S. No.	Title of the Book	Author	8	Year of
	Title of the Book	Author		Publication
1.	Microbiology	Pelzer, Chan	McGraw-Hil.	1986
	5 th Edition	and Kreig.		
2	Microbiology.	Prescott,	McGraw Hill	2003
2.	5 th Edition	Harley, Klein.	Publ.	2003

REFERENCE BOOKS:

S. No.	Title of the	Author	Publishing	Year of
	Book	Author	Company	Publication
1.	Microbial	S.Meenakumari.	. MJP Publishers.	2004
	Physiology			
2.	General	Powar and	Himalaya	2010
	Microbiology.	Daginawala.	Publishing House	

Mapping with Programme Outcomes

Cos	P01	PO2	P03	P04
CO1	M	M	S	S
CO2	S	M	M	S
CO3	M	S	M	S
CO4	S	S	S	M

SEMESTER III

Core Practical-III	B.Sc. Biotechnology	2019 - 2020
Code: M19UBTP03	PRACTICAL - III - ANIMAL SCIENCE	
Credit: 3		

Objectives

To give hands on training to study anatomy of the animals and provide technical skills in microscopic observation of museum specimens mounting, spotters and dissections.

- 1. Cockroach Digestive system and Reproductive systems.
- 2. Mounting Mouth parts of Cockroach and Honey bee.
- 3. Collection and handling of Blood specimen
- 4. Collection and handling of Urine specimen
- 5. Qualitative analysis of Urine sample
- 6. Estimation of hemoglobin
- 7. Estimation of sugar in Urine
- 8. Estimation of sugar in Blood
- 9. Observation of Amoeba, paramecium, Plasmodium, Tapeworm Scolex, Earth worm, Starfish
- 10. Observation of Chick embryos (24, 33 & 48 Hours).
- 11. Observation of Frog post-fertilization stages- 2, 4 & 8 cell stages.
- 12. Observation of Transverse section of Ovum, ovary, testis, kidney Pancreas, pituitary thymus and thyroid gland.

S. No.	Title of the	Author	Publishing	Year of
	Book		Company	Publication
1.	Advanced	PS Verma and PC	S Chand	
	Practical	Srivastava	Publishing	2012
	Zoology			
2.	Practical	N. Arumugam, N.C	Saras	
	Zoology	Nair, S. Leelavathy, N.	Publication	
	Volume 1	SoundaraPandian, T.		2012
	Invertebrata,	Murugan and		
		Jayasurya		

3.	Practical	N. Arumugam, A.	Saras	
.	Zoology	Thangamani, S.	Publication	0040
	Volume 2	Prasannakumar, L.M.		2012
	Chordata,	Narayanan, Jayasurya,		
4.	A Manual of	P.S.Verma	S. Chand	
	Practical		Publishing,	2000
	Zoology:		company,	2000
	Chordates		New Delhi.	
5.	A Manual of	P S Verma	S. Chand	
	Practical		Publishing,	1071
	Zoology:		Company,	1971
	Invertebrates		New Delhi.	

REFERENCE BOOKS:

S. No.	Title of the	Author	Publishing	Year of
	Book		Company	Publication
1.	Practical Zoology	C.J. Wallis	6 th Edition,	
	For Advanced		Butterworth-	
	Level and		Heinemann,	1974
	Intermediate		Elsevier Ltd.	
	Students			
2.	Practical Zoology	Robert William	Andesite Press	2015
		Hegner		2015

SEMESTER III

Allied Practical-III	B.Sc. Biotechnology 2019 - 20		
Code: M19UMBAP01	ALLIED PRACTICAL - III - BASIC MICROBIOLOG		
Credit: 3		.01102102041	

Objectives

To provide good laboratory practices about basics of microbiology techniques.

- 1. Cleaning and Preparation of glassware.
- 2. Preparation of Microbiological media.
- 3. Sterilization glassware and media wet, dry and filtration.
- 4. Isolation of microorganisms from various samples.
- 5. Counting of microbes Use of haemocytometer, colony counting.
- 6. Identification of microbes Microscopy & Macroscopy.
- 7. Motility of Bacteria by Hanging drop method.
- 8. Staining of bacteria Simple & differentia staining Gram, spore, capsule, flagella.
- 9. Culture Techniques Pure culture slant, stab, streak etc.
- 10. Maintenance and storage of bacterial strains.
- 11. Staining of fungi.

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Practical	B. Senthilkumar,	Panima	
	Microbiology -	Zothanzanga, D.	Publishing	
	A Laboratory	Senbagam, N.	Corp	2014
	Manual	Senthilkumar, G.		
		Gurusubramanium		
2.	Experimental	S. Rajan and R. Selvi	Anjanaa	
	procedures in	Christy	Book house,	2012
	Life Sciences		Chennai	
3.	Manual for	S. Rajan	Anjanaa	
	Medical		Book house,	2012
	Laboratory		Chennai	2012
	Technology			

REFERENCE BOOKS:

S. No.	Title of the	Author	Publishing	Year of
	Book		Company	Publication
1.	Laboratory	Gunesekaran	New Age	
	Manuel in	P	international, India	1996
	Microbiology			
2.	Experiments in	Aneja KR	New Age	
	Microbiology,		International	
	Plant pathology		Publishers,	2005
	and		Chennai.	
	Biotechnology.			
	4th Edition			

SEMESTER III

SKILL ENCHANCEMENT COURSES - I

SEC - I	B.Sc. Biotechnology	2019 - 2020
Code:M19UBTS01	SEC - I - BIOPHYSICS AND BIOINSTRU	IMENTATION
Credit: 2		

Objectives

To provide the basic knowledge about basic principles and working mechanism of bioinstrumentation techniques involved in separation, identification and purification of biological substances.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Describe the basic concepts of chemical bonds and instrumentation principles	K1
CO2	Understand the various types of microscope	K2
CO3	Apply various physical laws depending upon their applications and properties	К3
CO4	Analyze the various sample using biological instruments	К4

UNIT-I

Nature of chemical bond, Bonds in biological system. Laws of thermodynamics and concept of free energy, Biophysics of Water.

UNIT-II

Spectroscopy – Beer-Lamberts law, Colorimetry, IR spectrophotometer, Atomic Absorption spectrophotometer. Flame photometer.

UNIT-III

Microscopes - Principles, applications and types – Bright & Dark-field, Phase-contrast, fluorescence and Electron microscopy – SEM and TEM.

UNIT-IV

Centrifugation – Principle, preparative and analytical centrifugation, differential centrifugation, density gradient centrifugation – Rate zonal and Isopycnic. Rotor and its types. Chromatography – Principle, gas liquid chromatography, HPLC, Ion exchange chromatography, affinity chromatography and gel permeation chromatography.

UNIT-V

Electrophoresis – Agarose gel electrophoresis and PAGE. Methods of Imaging – X-ray, CT Scan, ECG, EEG, Concept of Radioactivity, methods for measuring radioactivity – GM counter.

TEXT BOOKS:

S. No.	Title of the	Author	Publishing	Year of
3. NO.	Book	Author	Company	Publication
	General			
1.	Biophysics,	H.V. Volkones	Academic Press	1983
	vol. I & II			
2	Diophysics	C Mahaah	New Age	2003
2.	Biophysics	S. Mahesh	International (P), Ltd	

REFERENCE BOOKS:

S. No.	Title of the Book	Author	Publishing	Year of
5. NO.	Title of the book	Author	Company	Publication
1.	Microbial genetics	David Freifelder David M. Freifelder and John E. Cronan	Jones & Bartlett Publishers	1994
2.	Biophysical chemistry	Upadhyay	Himalaya Publication	2005
3.	Techniques and methods in Biology	K.L Ghatak	PHI Learning Private Limited	2001

Mapping with Programme Outcomes

Cos	P01	PO2	PO3	P04
CO1	S	S	M	S
CO2	M	S	M	M
CO3	M	M	S	S
CO4	M	S	S	M

SEMESTER IV

Core - IV	B.Sc. Biotechnology	2019 - 2020	
Code:M19UBT04	GENETICS AND MOLECULAR BIO	DLOGY	
Credit: 4	GENETICS AND MOLECULAR DIOLOGI		

Objectives

To understand the central theories and methodologies that define the field of genetics and molecular biology.

Course Outcomes

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number	GO Statement	Level
CO1	Describe the fundamental principles of Mendelian, non-Mendelian and extended inheritance with example	K1
CO2	Understand the chromosomal aberrations, genetics disorders and genome organization in bacteria, plant and animal	K2
CO3	Apply the structure, formation and function of DNA, RNA and describe the prokaryotic and eukaryotic cells replication, different types of mutations and DNA-repair system	К3
CO4	Analyze the microbial genetics, biology of N ₂ fixation and molecular marker techniques	К4

UNIT-I

Mendelian laws of inheritance, Non-Mendelian inheritance; Linkage and Crossing-over. Chromosomal theory of inheritance. Cytoplasmic inheritance - Snail coiling, kappa particle in paramecium; Haemophilia, Color blindness.

UNIT-II

Chromosome aberrations – Numeral (Euploid, Aneuploid) and Structural aberration. Albinism, Sickle Cell Anemia, Phenyl Ketonuria.

UNIT-III

Structure, types, forms & functions of DNA and RNA. DNA replication in Prokaryotes and Eukaryotes. Mutations: Spontaneous and induced mutations. Mutagens and its types. DNA Repair.

UNIT-IV

Central dogma of Molecular Biology – Transcription and Translation, Genetic code. Regulation of gene expression-lac and trp operons.

UNIT-V

Microbial genetics – Conjugation, Transformation and Transduction, Two-component regulatory system. Molecular biology of N_2 fixation. Molecular marker techniques - RFLP, RAPD, AFLP and QTL.

REFERENCE BOOKS:

Title of the Book	Author	Publishing Company	Year of
THE OF THE BOOK	numor	r abilishing company	Publication
Molecular genetics of Photosynthesis	Anderson B, Salter H	IRL press, Oxford	1996
Cell and Molecular Biology	Robertis <i>et al</i> .	Waverly publication, edition 8	1995
Genetics	Strickberger	M.W.Printice hall, edition 4	1997
Molecular Biology of he Cell	Alberts	Garland publication, edition 4	2002
	E.J.Gardener,		
Principles of Genetics	M.J.Simmons and D.P.Snustad	John Wiley & Sons Publications	1997
	Photosynthesis Cell and Molecular Biology Genetics Molecular Biology of he Cell	Molecular genetics of Photosynthesis Cell and Molecular Robertis et al. Genetics Molecular Biology of the Cell Principles of Genetics Anderson B, Salter H Robertis et al. Strickberger Alberts E.J.Gardener, M.J.Simmons and	Molecular genetics of Photosynthesis Anderson B, Salter H Robertis et al. Genetics Molecular Biology of the Cell Principles of Genetics Anderson B, Salter H Waverly publication, edition 8 M.W.Printice hall, edition 4 Garland publication, edition 4 E.J.Gardener, M.J.Simmons John Wiley & Sons and Publications

			D 1 W 1	Year of
S. No. Title of the	Title of the Book	Author	Publishing Company	Publication
1.	Plant biochemistry and	Lea P.J &	John Wilow 9 gong	1993
	Molecular biology	Leegood	John Wiley & sons	1993
2	Text Book of Cell and	A'- D- 1	Books and Allied (P) Ltd,	2007
2.	Molecular Biology	Ajay Paul	2 edition	2007

Mapping with Programme Outcomes

Cos	P01	PO2	PO3	P04
CO1	S	M	S	M
CO2	S	S	S	M
CO3	M	S	M	S
CO4	S	S	S	M

SEMESTER IV

Allied- IV	B.Sc. Biotechnology	2019 - 2020		
Code: M19UMBA02	ALLIED- IV - APPLIED MICROBIOLOGY			
Credit: 4				

Objectives

To understand the basic principles of Microbiology and their applications.

To create awareness of microbial diseases and causes of human beings.

To understand the application of microbes involved in food, environment and industries.

Course Outcomes

On the successful completion of the course, students will be able to

СО	CO Statement	Knowledge
Number		Level
CO1	Describe the principles of sterilization, antibiotics mode of action and culture techniques	K1
CO2	Understand the Morphology, culture, biochemical, pathogenicity, laboratory diagnosis of microbial diseases	К2
CO3	Explain the various factors affecting food and dairy industry	К3
CO4	Analyze microorganisms in biodegradation and bioconversion	K4

UNIT-I

Sterilization techniques - Physical and chemical Methods. Media and its types. Culture techniques - Pure culture, anaerobic culture - preservation of cultures. Growth of bacteria - multiplication - growth curve - Determination of growth. Collection and transport of clinical specimens for microbiological examinations.

UNIT-II

Morphology, culture, biochemical, pathogenicity, laboratory diagnosis and prevention of microbial disease - *Staphylococcus aureus*, *Mycobacterium tuberculosis*, *Salmonella typhi*, *Escherichia coli*, Dengue virus, Nipah virus, H1N1 virus, *Aspergillosis*, *Candidiasis*, Malaria parasite.

UNIT-III

Importance of studying food and dairy microbiology. Primary sources of microorganisms in foods. Factors influencing microbial growth in foods - extrinsic and intrinsic. Principles of food preservation - preservation methods - irradations - drying, heat processing, chilling and freezing, high pressure, modification of atmosphere and chemical preservatives. Nutritional value of fermented foods. Microbiology of milk, Cheese, Yogurt (curd), Idli, Kinema.

UNIT-IV

Biodegradation of oil, bio-deterioration of materials – paint, paper, wood and leather– mode of deterioration – organism involved. Tannery technology- Treatment of tannery effluents by microbes. Bioconversions – Biomining and bioleaching of ores (Use of microorganisms in Bio-gas production, Bio-leaching and Bio-diesel.

UNIT-V

Environmental Microbiology: Microbiology of air - composition of air, number and types of organisms in air. Distribution and sources of air borne organisms. Enumeration of bacteria in air - Air sampling devices. Air sanitation. Air borne diseases and their control. Microbiology of water - determination of water quality - bacteriological examination of water - indicator organisms - water borne pathogens.

REFERENCES BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Chemical Microbiology - An introduction to	AH Rose.	Butterworth, London.	1976
	microbial physiology			
2.	Brock Biology of	MT Madigan,	10 th Edition – Pearson	
	Microorganisms	JM Martinko &	and Education Inc., New	
		Jack Parker	Jersey.	2002
3.	Microbiology	Prescott, Harley, Klein.	5 th Edition. McGraw Hill Publ	2003
4.	Molecular	Bernard R.	Indian edition.	
	Biotechnology	Glick & Jack J.	Panima Publishing	2002
		Pasternak,	Corporation.	
5.	Microbiology	Pelzer, Chan	5 th Edition. McGraw-Hill	1986
		and Kreig.		1900
6.	Microbial Physiology	S.Meenakumari	MJP Publishers	2009
M	lapping with Progran	nme Outcomes		

Cos	P01	PO2	P03	P04
CO1	S	S	S	M
CO2	S	M	S	M
CO3	M	M	S	S
CO4	S	S	S	M

SEMESTER IV

Core Practical- IV	B.Sc. Biotechnology	2019 - 2020
Code: M19UBTP04	TP04 PRACTICAL - IV - GENETICS AND MOLECULAR	
Credit: 3	BIOLOGY	

Objectives

To give hands on training in theoretical and practical introduction to important methods and techniques in genetics and molecular biology.

- Karyotype analysis: Man– Normal and Abnormal– Down and Turner's Syndromes.
- 2. Mendel's laws of genetics-Mono and Dihybrid crosses.
- 3. Rearing morphology of drosophila.
- 4. Observation of Genetic model organisms (*Arabidopsis thaliana* and *Coenorrabditis elegans*)
- 5. Isolation and purification of plasmid DNA.
- 6. Observation of DNA Agarose gel electrophoresis
- 7. Quantification of nucleic acids DNA & RNA Chemical and UV method.
- 8. Bacterial mutagenesis physical & chemical.
- 9. Preparation of *E. coli* competent cells.
- 10. Transformation of bacteria CaCl₂ method.
- 11. Bacterial conjugation.
- 12. Transduction

TEXT BOOKS:

S. No.	o. Title of the Book Author	Authon	Publishing Company	Year of
5. NO.	Title of the book	Autiloi	rublishing Company	Publication
	Plant biochemistry	Lea P.J		1993
1.	and Molecular	•	John Wiley & sons	
	biology	&Leegood		
	Text Book of Cell		Books and Allied (P)	2007
2.	and Molecular	Ajay Paul		
	Biology		Ltd, 2 edi	

REFERENCE BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Molecular genetics	Anderson	IDI proce Oxford	1996
1.	of Photosynthesis	B, Salter H	IRL press, Oxford	1990
2.	Cell and Molecular	Robertis <i>et</i>	3Waverly publication,	1995
2.	Biology	al.	edition 8	1773
3.	Genetics	Strickberger	M.W. Printice hall, edition 4	1997
4.	Molecular Biology	A 11	Garland publication,	2002
4.	of the Cell	Alberts	edition 4	2002

SEMESTER IV

Allied Practical-IV	B.Sc. Biotechnology	2019 - 2020	
Code: M19UMBAP02	PRACTICAL - IV - APPLIED MICROBIOLOGY		
Credit: 3	FRACTICAL - IV - AFFLIED MICROBIOLOGI		

Objectives

To give hands on training on applied microbiological techniques. It includes identification of bacteria, culture characterization on different media, growth pattern and determination of water portability.

- 1. Biochemical characterization of Bacteria Catalse test, oxidase test, Sugar fermentation, IMVIC, urease test, TSI test, Starch hydrolysis.
- 2. Cultural characteristics of microorganisms on Basal medium, Selective medium,
- 3. Differential medium, Enriched medium, Enrichment medium.
- 4. Growth Growth curve
- 5. Antibiotic sensitivity test by Kirby- Bauer disc diffusion method.
- 6. Determination of portability of water by MPN method.
- 7. Isolation of Lactobacilli from curd.
- 8. Methylene blue reductase test.

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Practical	B. Senthilkumar,	Panima	1 ublication
	Microbiology -	Zothanzanga, D.	Publishing	
	A Laboratory	Senbagam, N.	Corp	2014
	Manual	Senthilkumar, G.		
		Gurusubramanium		
2.	Experimental	S. Rajan and R. Selvi	Anjanaa	
	procedures in	Christy	Book house,	2012
	Life Sciences		Chennai	
3.	Manual for	S. Rajan	Anjanaa	
	Medical		Book house,	2012
	Laboratory		Chennai	2012
	Technology			

REFERENCE BOOKS:

S. No.	Title of the	Author	Publishing	Year of
	Book		Company	Publication
1.	Laboratory	Gunesekaran	New Age	
	Manuel in	P	international, India	1996
	Microbiology			
2.	Experiments in	Aneja KR	New Age	
	Microbiology,		International	
	Plant pathology		Publishers,	2005
	and		Chennai.	
	Biotechnology.			
	4th Edition			

SEMESTER IV

SKILL ENCHANCEMENT COURSES - II

SEC - II	B.Sc. Biotechnology 2019 - 202	
Code: M19UBTS02	SEC - II - BIOINFORMAT	<mark>ICS</mark>
Credit: 2		

Objectives

To understand the creation and development of databases, software, computational, statistical techniques and also solving problems generated from the management and analysis of biological data.

Course Outcomes

On the successful completion of the course, students will be able to

СО	CO Statement	Knowledge
Number		Level
	Describe the fundamental principles	
CO1	bioinformatics and understand the concept of	K1
	website and its application	
	Understand the useful and application of	
CO2	database search both sequence and structural	K2
	databases	
CO3	Apply the tools and algorithms for phylogenetic	К3
403	tree	KS
CO4	Analyze structure of nucleotide using gene	K4
CO4	prediction tools	IXT

UNIT-I

Introduction to Bioinformatics - Databasaes - Data Storage System – DBMS - Scope and application of Bioinformatics, Important contributions in Biological aspects - aims and tasks of Bioinformatics.

UNIT-II

Biological Databases - structural Databases (PDB, SCOP, CATH), Sequence Databases (NCBI, EMBL, DDBJ, PIR), Specialized Database: HGP, OMIM, SNP, KEGG.

UNIT-III

Sequence analysis: Sequence Alignment, Pairwise alignment and multiple sequence alignment, Global and Local Alignment, computational tools: BLAST, FASTA, Clustal W, T-coffee.

UNIT-IV

Structural Analysis: Omic X, SCFBio, JPRED, PHD, HMMSTR and APPSP2. Visualization tools: Rasmol, Pymol and Gene Prediction Tools. UNIT-V

Phylogenetic analysis tools: MEGA, MOLPHY, PAML, PHYLIP, JSTree. Drug Discovery – Docking – Autodock - HADDOCK.

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Bioinformatics methods and application – Proteomics, Genomics and Drug Discovery.	S.C.Rastogi N. Mendiratta P.Rastogi	PHL Pvt Ltd	2013
2.	Introduction to bioinformatics	Arthur M. Lesk	Oxford University Press	2014
3.	Bioinformatics Computing	Bryan Bergeron M.D	Pearson Education India	2015
4.	BIOS Instant Notes Bioinformatics 2 nd Edn	Charlie Hodgman Andrew French David Westhead	T & F / Routledge	2015

Mapping with Programme Outcomes

Cos	P01	P02	P03	P04
CO1	M	M	M	S
CO2	S	S	M	S
CO3	M	M	M	S
CO4	M	S	M	M

SEMESTER V

Core - V	B.Sc. Biotechnology	2019 - 2020
Code: M19UBT05	IMMUNOLOGY	
Credit: 4		

Objectives

To understand different attributes of immune system, immune mechanism and its responses in living beings.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Describe the history, types of immune system and the organs involved	K1
CO2	Understand the antigen characteristics and its activation	К2
CO3	Discover diagnostic methods of antigen and antibody interaction and the gene expression	К3
CO4	Analyze transplantation and autoimmunity systems	K4

UNIT-I

Historical perspectives and Scope of Immunology, Innate and Acquired immunity, Cells of the Immune system, Haematopoiesis, Organs of the Immune System: Primary and Secondary Lymphoid Organs.

UNIT-II

Antigen – Characteristics, Classes, Factors that influence immunogenicity. Haptens, Mitogens, Adjuvants. Humoral Immune response – B cell activation and proliferation. Cell mediated Immune response – T cell receptors and its activation.

UNIT-III

Immunoglobulins – Structure and functions. Antigen – Antibody reactions – Agglutination, precipitation, RIA, ELISA, FACS.

UNIT-IV

Cytokines: Types and function, Complement – Classical and Alternative pathway. Major Histocompatability Complex (MHC), Hybridoma technology. Hypersensitivity and its types.

UNIT-V

Transplantation immunology. Autoimmunity, Cancer immunology, Vaccines. Immunotherapeutics. Immuno tolerance, Immunity to infectious diseases-AIDS.

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Immunology	Kubey, J	Freeman and company	1993
2.	Immuno-biology	Janeway, C.A	Paul Travers	1994
3.	Text Book of Immunology	SeemiFarhatBasir	PHI Learning	2012
4.	A Text Book of Immunology	MadhaveeLatha, P	S. Chand & Company Ltd	2012
5.	Textbook of Immunology :	Ajoy Paul.	S. Chand & Company Ltd	
	including Immunotechnology& Immunotherapy			2015
6.	Immunology and Immunotechnology.	Rajasekarapandian M and Senthil kumar B	Panima publishing corporation	2007

Mapping with Programme Outcomes

Cos	P01	P02	P03	P04
CO1	S	M	M	M
CO2	S	M	S	S
CO3	M	S	S	S
CO4	M	S	M	M

SEMESTER V

Core - VI	B.Sc. Biotechnology	2019 - 2020	
Code: M19UBT06	rDNA TECHNOLOGY		
Credit: 4			

Objectives

To understand basic principles and methods of rDNA technology and to provide knowledge about enzymes and vectors involved in rDNA technology, DNA amplification, hybridization techniques, gene transfer methods and transgenic products.

Course Outcomes

On the successful completion of the course, students will be able to

СО	CO Statement	Knowledge
Number		Level
CO1	Describe the fundamental principles rDNA technology, DNA modifying enzymes	K1
CO2	Understand the various types of vectors involved in rDNA technology	K2
CO3	Explain deeper understanding DNA hybridization, sequencing methods	К3
CO4	Analyze the transgenic plants and animals and pharmaceutical products.	K4

UNIT-I

Introduction to recombinant DNA technology. Enzymes in rDNA technology – Restriction enzymes, DNA modifying enzymes - Polymerase, Transferase, alkaline phosphatase, polynucleotide kinase. Cohesive and blunt end ligation, linkers, adaptors and homopolymeric tailing.

UNIT-II

Vectors - Plasmids - pBR322, PUC19, Phage vectors, Cosmids, Phagemids, lambda phage virus vectors, Shuttle vectors and expression vectors. Artificial chromosome vectors (YAC, BAC), animal virus derived vectors - SV40. Plant based vectors - Ti plasmid.

UNIT-III

Construction of genomic libraries and cDNA Libraries. Recombinant selection and screening, DNA amplification – Principles and application of Polymerase chain reaction (PCR).

UNIT-IV

Principles of DNA hybridization. Southern, Northern and Western blotting techniques. DNA Sequencing methods – sangers and maxam gilbert. Site directed mutagenesis, Chromosome jumping, DNA Microarray. UNIT-V

Transgenic plants - pest resistances, herbicide tolerance and stress tolerance (cold, heat and salt). Transgenic animals – Pharmaceutical products – Insulin, Recombinant Vaccine production. Ethical issues and safety regulations in rDNA technology.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Molecular Biology of the Cell.	Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter	4 th Edition. Garland Sciences	2002
2.	Microbial genetics	Stanley Maloy	2^{nd} Edition. Jones and	
			Bartlett publisher	1994
3.	Modern Microbial Genetics	Uldis N. Streips and Ronalad E. Yasbin.	2nd Edition. Wiley- Blackwell.	2002
4.	Principles of Gene Manipulation	Sandy B. Primrose, Richard M. Twyman, Robert W. Old.	6 th Edition. Blackwell Science	2008
5.	Genomes.	Brown TA.	3 rd Edition. New York: Garland Publishing Co. New York: Garland Science.	2008.

6.	Principles of Gene Manipulation: An Introduction to Genetic Engineering	Old, R.W and S.B. Primrose	2 nd Edition. Blackwell Scientific Publications, Oxford	1996
7.	DNA Cloning: A Practical Approach	Glover, DM. and BD. Hames	2 nd Edition. IRL Press, Oxford.	1995
8.	Recombinant DNA	Watson J.D., Gilman M., Witkowski, J. and Zoller M	2 nd Edition. Scientific American Books, New York.	1992
9.	Analysis of Genes and Genomes	Daniel L. Hartl	Analysis of Genes and Genomes.	2011
10.	Recombinant DNA Technology	Keya Chaudhuri	The Energy and Resources Institute, TERI	2012.

Mapping with Programme Outcomes

Cos	P01	PO2	P03	P04
CO1	M	S	S	S
CO2	M	M	S	M
CO3	M	S	S	S
CO4	S	S	M	S

SEMESTER V

Core - VII	B.Sc. Biotechnology 2019 - 202		
Code: M19UBT07	BIOPROCESS TECHNOLOG	······································	
Credit: 4			

Objectives

To understand the various fermentation techniques in Bioprocess.

To learn about the technical and biological aspect of microbial utilization for production and purification of metabolites.

Course Outcomes

On the successful completion of the course, students will be able to

CO	Statement	Knowledge
Number	Statement	Level
CO1	Describe the methods of involved in the microbial technology	K1
CO2	Understand the designing of bioreactors and control necessary for enhancing production	K2
CO3	Apply the knowledge about media optimization for production of microbial metabolites	К3
CO4	Analyze the production methods of industrially important enzymes, antibiotics by downstream process	К4

UNIT-I

Introduction to bioprocess technology. Isolation and screening of industrially important microbes. Primary and Secondary screening. Improvement of the strains for increased yield and other desirable characteristics.

UNIT-II

Fermentation types - solid state and submerged. Bioreactor design, parts and their functions. Types of fermentor - CSTR, Tower, Jet Loop, Air left, Bubble column, Packed bed. Immobilization of cells.

Media formulation, Biological properties of medium. Sterilization - Batch and continues sterilization systems, Sterilization of air - Fibrous filters. Measurement and control of bioprocess parameters - pH, Temperature, Dissolved oxygen, Antifoam agents, Aeration and Agitation. UNIT-IV

Production and application of industrial enzymes - Amylase and protease. Antibiotic production and applications – tetracycline, streptomycin. Production of probiotics – lactobacillus.

UNIT-V

Downstream Processing – Disruption of Microbial Cells, Precipitation, Centrifugation, Filtration, Ultra filtration, Flocculation, Liquid-Liquid Extraction. Drying and Crystallization.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publisher	Year of Publication
	Industrial		Macillan	
1.	Microbiology	A.H.Patel	Publication, India	2008
			Ltd.	
	Bioprocess	Kalaichelvan		
2.	Technology	and	MJP. Publishers	2008
		Arulpandi		

Mapping with Programme Outcomes

Cos	P01	P02	PO3	P04
CO1	M	M	S	M
CO2	S	M	M	S
CO3	S	S	S	M
CO4	S	M	M	S

REFERENCE BOOKS:-

S. No.	Title of the Book	Author	Publisher	Year of Publication
1.	Principles of Fermentation Technology	Stanbury, RF and Whitaker A	Pergamon press, Oxford	1997
2.	Bioprocess Engineering: Basic concepts	Shuler ML and Kargi F.	Hall, Engelwood Cliffs	2002
3.	Bioprocess Engineering Principle	Doran	Elsevier	2007
4.	Comprehensive Biotechnology: The Principles, Applications and Regulations of Biotechnology in Industry, Agriculture and Medicine, Vol 1, 2, 3	Young M.M	Reed Elsevier India Private Ltd, India	2004

Mapping with Programme Outcomes

Cos	P01	P02	P03	P04
CO1	M	M	S	S
CO2	S	S	M	S
CO3	S	S	M	M
CO4	S	M	S	M

SEMESTER - V

Elective

Elective - I	B.Sc. Biotechnology 2019 - 2020		
Code: M19UBTE01	BIOETIHCS AND BIOSAFE	TY	
Credit: 4	2.525		

Objectives

To focus on health, maintenance of body weight and dieting. To impart Knowledge about personal hygiene, food contamination and role of international control of health and role of WHO.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Describe the basic concept of bioethics nationally and internationally	K1
CO2	Understand the principles of bioethics and ethics in molecular technology and post genomic era	K2
CO3	Judge the intellectual property rights, WIPO, GATT, and TRIP	КЗ
CO4	Analyze the concept bio-safety, health hazards in bio-safety	K4

UNIT-I

Bioethics-Necessity of Bioethics, different paradigms of Bioethics - National and International.

UNIT-II

Ethical issues against the molecular technologies. Basics of bioethics principles, international codes and guidelines in India-Ethics in post-genomic era.

Biosafety – Introduction to biosafety and health hazards concerning biotechnology. Introduction to the concept of containment level and Good Laboratory Practices (GLP) and Good Manufacturing Practices (GMP). UNIT-IV

Biosafety – Risk for human health, environment and agriculture. Biosafety guidelines, regulation and operation.

UNIT-V

Intellectual Property Right: Introduction, intellectual property: trade secret, patent, copyright, plant variety protection, WIPO, GATT, TRIPs, plant breeder's rights.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing	Year of
			Company	Publication
1.	Bioethics and	Sateesh MK	I.K. International	2010
	biosafety		Pvt. Ltd.	
2.	Bioethics and	Sree Krishna V	New age	2007
	Biosafety in		international	
	Biotechnology		publishers	

Mapping with Programme Outcomes

Cos	P01	P02	P03	P04
CO1	S	S	M	S
CO2	S	S	M	M
CO3	S	S	M	S
CO4	S	M	S	S

SEMESTER V

Elective - I	B.Sc. Biotechnology	2019 - 2020
Code: M19UBTE02	DEVELOPMENTAL BIOLOGY	
Credit: 4		

Objectives

To provide a broad, comprehensive look at embryology with special emphasis on vertebrate models, focusing on both classical experiments and modern molecular and genetic techniques.

To understand the mechanisms involved in growth and development of complex organisms.

Course Outcomes

Students who successfully complete the course will be able to:

CO	CO Statement	Knowledge
Number	CO Statement	Level
CO1	Describe the types and stages of sexual cycle and gametogenesis	K1
CO2	Understand the concepts and methods of assisted reproductive techniques for conservation of wild, rare or indigenous ungulates and solve the infertility problems	К2
CO3	Show the knowledge about assisted reproductive technology	К3
CO4	Analyze the embryogenesis, molecular development of plants and animals	K4

UNIT-I

Reproductive cycle in mammals, Spermatogenesis and Oogenesis in mammals, Types of eggs and Fertilization.

UNIT-II

Reproductive hormones, Sperm Banking, Artificial Insemination, *In vitro* Fertilization, Embryo Transfer and surrogacy.

Types and patters of cleavage, Blastulation, Gastrulation, outline of fate maps and morphogenetic movements, Metamorphosis (Insects and amphibians) and its hormone control.

UNIT-IV

Plant embryogenesis- Development of Microsporangium and Megasporangium, Pollination, Embryo development and double fertilization in plants and seed formation.

UNIT-V

Genetic control of development- pattern determination, Bithorax complex, genes controlling the flower development and Drosophila development.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of
				Publication
1.	Elements of Developmental Biology	P.C. Jain	Vishal Publication, New Delhi.	2013
2.	Developmental Biology	K. V. Sastry and Vinita Shukal	Rastogi publications	2012
3.	Chordate embryology	Verma, P.S., Agarwal, V.K., and Tyagi.,	S. Chand & Co., New Delhi.	1995
4.	An Introduction to Embryology-	A.K. Berry	M K publications New Delhi-51	2016

REFERENCE BOOKS:

S. No.	Title of the	Author	Publishing Company	Year of
	Book			Publication
1.	Developmental	Gilbert, S. F.	IX Edition, Sinauer	2010
	Biology,		Associates, Inc.,	
			Publishers,	
			Sunderland,	
			Massachusetts, USA	
2.	An introduction	Balinsky, B.I.	International Thomson	2008
	to Embryology		Computer Press.	
3.	Analysis of	Kalthoff,	II Edition, McGraw-Hill	2000
	Biological		Professional	
	Development			
4.	Development	Werner A.	Springer Berlin	2015
	and	Mueller, Monika	Heidelberg	
	Reproduction in	Hassel and		
	Humans and	Maura Grealy		
	Animal Model			
	Species			
5.	An Introduction	Chattopadhyay.S.	Books and Allied (P)	2016
	to		Ltd, Kolkata. First	
	Developmental		Edition.	
	Biology			

Mapping with Programme Outcomes

Cos	P01	PO2	P03	P04
CO1	M	M	S	S
CO2	S	M	M	S
CO3	M	S	M	S
CO4	S	S	S	M

SEMESTER - V

Elective -I	B.Sc. Biotechnology	2019 - 2020
Code: M19UBTE03	NURSERY AND GARDEN	ING
Credit: 4	- NORDENT TIND GIRDENTING	

Objectives

To focus on basic principles and methods of nursery and gardening.

To provide knowledge about seed types, seed structure, vegetative propagation and various types of vegetable cultivation.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Describe the basic concept of nursery, infrastructure and planting.	K1
CO2	Understand the basic knowledge about seeds structure, types, storage and production technology.	K2
CO3	Apply the knowledge about vegetative propagation, hardening of plants and green house.	К3
CO4	Analyze the suitable techniques in nursery and gardening	K4

UNIT-I

Nursery: definition, objectives and scope and building up of infra structure for nursery, planning and seasonal activities-Planting-direct seeding and transplants.

UNIT-II

Seed: Structure and types- Seed Dormancy; causes and methods of breaking dormancy –Seed storage: Seed banks, factors affecting seed viability, genetic erosion- Seed production technology-seed testing and certification.

Vegetative propagation: air-layering, cutting, selection of cutting, collecting season, treatment of cutting, rooting medium and planting of cuttings-Hardening of plants-green house-mist chamber, shed root, shade house and glass house.

UNIT-IV

Gardening: definition, objectives and scope – different types of gardening- landscape and home gardening – parks and its components-plant materials and design – computer applications in land scaping-Gardening operations: soillaying, manuring, watering, management of pests and diseases and harvesting.

UNIT-V

Sowing/raising of seed sand seedlings – Transplanting of seedlings - Study of cultivation of different vegetables: cabbage, brinjal, lady's finger, onion, garlic, tomatoes, and carrots-Storage and marketing procedures.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing	Year of	
5. NO.	Title of the book	Author	Company	Publication	
		Bose,T.K.&	Oxford & IBH		
1.	Gardeningin India	·	Publishing Co.,	1972	
		Mukherjee, D	New Delhi.		
2	Dlant Duana action	Can dhaa M.V	WileEasternLtd.,	1000	
2.	Plant Propagation	Sandhu, M.K.,	Bangalore,Madras	1989	
3.	Introduction to Horticulture	Kumar, N	RajalakshmiPublic ations, Nagercoil.	1997.	
4.	Fundamentals	Edmond	McGraw HillBook	2005	
4.	ofHorticulture	Musser&Andres	Co., New Delhi.	2005	
	Hand Book of Seed		National Seed		
5.		Agrawal, P.K	CorporationLtd.,	1993	
	Technology		New Delhi.		

Mapping with Programme Outcomes

Cos	P01	P02	P03	P04
CO1	S	S	M	M
CO2	S	S	M	S
CO3	M	S	M	S
CO4	S	M	S	M

SEMESTER V

Elective-I	B.Sc. Biotechnology	2019 - 2020
Code: M19UBTE04	HERBAL TECHNOLOGY	
Credit: 4		

Objectives

To impart complete knowledge about herbal medicines, phytoconstituents and their importance in drug designing and disease management.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Describe knowledge about history and importance of herbal medicines	K1
CO2	Understand the basic principles, chemical constituents of plant and its systemic position	K2
CO3	Apply the phytochemical extraction techniques in the pharmaceutical industry.	К3
CO4	Analyze the various herbal extraction for phytochemical screening	K4

UNIT-I

Herbal medicines: history and scope - definition of medical terms -role of medicinal plants in Siddha systems of medicine; cultivation - harvesting -processing- storage -marketing and utilization of medicinal plants.

UNIT-II

Pharmacognosy - systematic position -chemical constitution and medicinal uses of the following herbs in curing various ailments; Tulsi, Ginger, Fenugreek, Indian Gooseberry and Ashoka.

Phytochemistry – active principles and methods of their testing - identification and utilization of the medicinal herbs; *Catharanthus roseus* (cardiotonic), *Withania somnifera* (drugs acting on nervous system), *Clerodendron Phlomoides* (anti-rheumatic) and *Centella asiatica* (memory booster).

UNIT-IV

UNIT-V

Analytical pharmacognosy: Drug adulteration -types, methods of drug evaluation-Biological testing of herbal drugs - Phytochemical screening tests for secondary metabolites (alkaloids, flavonoids, steroids, triterpenoids, phenolic compounds, fatty acids, tannins, glycosides and volatile oils).

Medicinal Plant Biotechnology: Genetics as applied to medicinal herbsmutation- polyploidy. Plant tissue culture a source of bio-medicinals-Historical developments- types of cultures- phyto-pharmaceuticals in tissue cultures.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
	Glossary of	R.N.Chopra,S.L.N		
1.	Indian medicinal	ayarand	C.S.I.R, New Delhi	1956
	plants	I.C.Chopra		
2.	Theindigenousdr	Kanny, Lall, Dey	International Book	1984
۷.	ugs of India	and Raj Bahadur	Distributors	1704
3.	Herbal plants and	A nh an	Mangal Deep	1999
	Drugs Agnes	Arber	Publications	1799

REFERENCE BOOKS:-

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Ayurvedic drugs and their plant source	V.V.Sivarajan and Balachandran	Oxford IBH publishing Co	1994
2.	Ayurvedaand Aromatherapy	Miller, Light andMiller, Bryan	Banarsidass, Delhi.	1998

3. Principles of Anne Green Thomsons, Anne Green London.

4. Pharmacognosy Dr.C.K.Kokate Prakashan.

Mapping with Programme Outcomes

Cos	P01	PO2	PO3	P04
CO1	S	M	S	M
CO2	S	M	M	M
CO3	M	M	S	S
CO4	S	M	M	S

SEMESTER V

Core Practical-V	B.Sc. Biotechnology	2019 - 2020		
Code: M19UBTP05	PRACTICAL - V - IMMUNOLOGY AND rDNA			
Credit: 3	TECHNOLOGY			

Objectives

To provides hands on training in the field of immunology and rDNA technology methods like blood sample analysis, WBC and RBC count, agglutination tests, precipitation tests.

To provide knowledge about the plasmid DNA isolation, restriction digestion, ligation and transformation.

- 1. Preparation of plasma and serum.
- 2. Total count of Blood cells (WBC & RBC) using Haemocytometer.
- 3. Agglutination tests:
 - a. ABO Blood grouping.
 - b. WIDAL test.
 - c. ASO test.
 - d. Pregnancy test.
 - e. RPR test.
- 4. Precipitations:
 - a. Radial immunodiffusion.
 - b. Double immnodiffusion.
- 5. ELISA
- 6. Isolation and visualization of plasmid DNA.
- 7. Restriction Digestion of Lamda DNA.
- 8. Ligation of DNA Fragments.
- 9. Isolation of Antibiotic Resistant Mutants.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publisher	Year of Publication
1.	Practical immunology Veterinary	Frank C. Hay and olwyn M.R. Westwood	Wiley-Blackwell	2002
2.	Immunology & Seriology: A Practical Manual	Varsha Sharma	Satish Serial Publishing House	2015
3.	Manual for Medical Laboratory Technology	S. Rajan	Anjanaa Book house, Chennai	2012
4.	Molecular Biology and Recombinant DNA Technology: Practical Manual Series (Vol II)	Ashok Kumar	Narendra Publishing House	2011

SEMESTER V

Core Practical - VI	B.Sc. Biotechnology	2019 - 2020		
Code: M19UBTP06	PRACTICAL - VI - BIOPROCESS TECHNOLOGY			
Credit: 3				

Objectives

To provide good laboratory practices in the aspect of microbial utilization for production and purification of metabolites.

- 1. Isolation of Amylase producing organisms from soil.
- 2. Isolation of antibiotic producing microbes from soil.
- 3. Culture optimization (pH and Temperature).
- 4. Production of industrial enzyme by submerged fermentation- Amylase
- 5. Assay of Industrial important enzymes Amylase.
- 6. Microbial production of citric acid using Aspergillus niger.
- 7. Immobilization of yeast cells.
- 8. Wine production.
- 9. Alcohol production and estimation by chromic acid method.
- 10. Purification of Enzymes by Dialysis and Chromatography method Demo.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publisher	Year of Publication
1.	Experimental procedures in life sciences Manual	Rajan, Selvi Christy	Anjanaa Publisher	2010

SEMESTER V

SEC-III	B.Sc. Biotechnology	2019 - 2020
Code: M19UBTS03	SEC - III - INDUSTRIAL BIOTECHNOLO	OGY AND IPR
Credit: 2		

Objectives

To understand the principles, methods and application of industrial biotechnology.

To know about the legal issues affecting the biotechnology research.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Describe the fundamental principles, methods and application of various biotechnology food industries	K1
CO2	Understand the microbial production and its control methodology	К2
CO3	Apply the principle and methods in industrial biotechnology for production bio-products	КЗ
CO4	Analyze the industrial biotechnological products for betterment of mankind	К4

UNIT-I

Introduction and history of industrial biotechnology. Application of industrial biotechnology in various industries- Food, beverages, textiles, papers, and medicines. Ketogenic fermentation process.

UNIT-II

Microbial processes, production and commercial importance of Organic acids - Citric acid and Acetic acid. Amino Acids - L-Glutamic acid and L-Lysine. Process control fermentation of amino acids.

Microbial production of Butanol, Acetone and Ethanol. Microbial production of Antibiotics - Production, biosynthesis of Tetracycline, Aromatic antibiotics -Chloramphenicol, novobiocin.

UNIT-IV

Microbial production of Beer, wine, vinegar, and its commercial importance. SCP production and its economic importance. Industrial production of Biopesticides and Biofertilizers. Mushroom cultivation.

UNIT-V

Intellectual Property Rights (IPR) - different types of IPRs, studies on patents granted in India and other countries. IPR in genetically modified organisms; regulating the use of biotechnology – rDNA technology – Food and Agricultural ingredients – patenting biotechnology inventions.

TEXT BOOKS:

S. No.	Title of the	Author	Publishing	Year of
	Book		Company	Publication
1.	Intellectual	Wolfgang	Springer Briefs in	2012
	Property Issues:	Flasche , Johanna	Biotech Patents	
	Therapeutics,	Driehaus		
	Vaccines and			
	Molecular			
	Diagnostics			
2.	Dagia Industrial	S.M. Reddy, S.Ram	New age	2012
	Basic Industrial	Reddy, G.Narendra	International	
	Biotechnology	Babu	Publishers	
3.	Industrial	Dr. N. N. Bandela,	Kindle edition	2016
		Dr. Jitendra		
	Biotechnology	Ambulge		
4.	An Introduction	Venkataraman M	Kindle edition	2015
	To Intellectual			
	Property Right			
5.	Biotechnology	Kshitij Kumar	Kindle edition	2014
	and Intellectual	Singh		
	Property Rights			

REFERENCE BOOKS:

1121 2	RENGE BOOKS.			
S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Biotechnology- A text book of industrial microbiology	Wulfcrueger and Anneliesecrueger	Panima publishing corporation, New Delhi	2003
2.	Bioprocess Engineering: Basic concepts, 2nd Edition.	Shuler ML and Kargi F	Prentice Hall, Engelwood Cliffs	2002
3.	Microbial technology (Microbial processes). 2nd Edition	Peppler-Perlman.	Academic press	2004
4.	Comprehensive Biotechnology: The Principles, Applications and Regulations of Biotechnology in Industry, Agriculture and Medicine	Young M.M., Reed.	Elsevier India Private Ltd, India.	2004
5.	Fermentation Microbiology and Biotechnology. 2nd Edition	Mansi EMTEL, Bryle CFA	Taylor & Francis Ltd, UK	2007

Mapping with Programme Outcomes

Cos	P01	P02	PO3	P04
CO1	M	M	S	S
CO2	S	M	M	S
CO3	M	S	M	S
CO4	S	S	S	M

SEMESTER VI

Core - VIII	B.Sc. Biotechnology 2019 – 202			
Code: M19UBT08	PLANT AND ANIMAL BIOTECHNOLOGY			
Credit: 4	1 EXIVI MIND MINIME DIO I EGIINOLOGI			

Objectives

To provide complete knowledge about plant and animal tissue culture techniques and their application.

To educate the elementary techniques for crop improvement and establishment of cell lines and monoclonal antibodies production.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Describe the fundamental knowledge about plant tissue culture methods	K1
CO2	Understand the protoplast technology, somaclonal variation, Cryopreservation and secondary metabolites production	К2
CO3	Choose the suitable <i>invitro</i> culture techniques of plants and animals	КЗ
CO4	Analyze the suitable methods for propagation of plant and animal cells	K4

UNIT-I

History and scope of plant tissue culture techniques, Laboratory organization. Micropropagation, Callus induction, organogenesis, Meristem culture, anther, pollen, embryo culture and their application.

UNIT-II

Protoplast technology – protoplast isolation, protoplast fusion and its application. Applications of plant tissue culture: - Elimination of pathogens, Germplasm conservation and Cryopreservation. Somoclonal variation, embryo rescue, synthetic seeds, Production of secondary metabolites.

Antisense RNA technology – Delayed fruit ripening , Plant viral vectors-TMV, Cauliflower Mosaic Virus (CaMV). Resistance to herbicide, insecticide, virus and bacteria. Plant tissue culture techniques for crop improvement.

UNIT-IV

Animal Tissue culture – Culture media, Primary culture, sub-culture and establishment of cell lines, types of cell lines, maintenance of cell lines, cloning of cell lines. Application of animal tissue culture.

UNIT-V

Molecular techniques in cell culture – In situ Molecular Hybridization, Somatic cell fusion, Production of Monoclonal antibodies. DNA transfer – Physical, chemical and biological methods. Transgenic animals – Mice, Goat.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of
				Publication
1.	Plant Tissue Culture	Kalyan Kumar	New Central Book	2008
		D	Agency 1st edition	
2.	Culture of Animal	R. Ian	John Wiley and Sons.	2005
	cells, A manual of	Freshney,	5 th edition,	
	basic technique			
3.	Animal Biotechnology	M. Ranga	Agrobios Publications,	2004
			2 nd edition	
4.	An Introduction to	M.K. Razdan,	Oxford and IBH	2000
	plant tissue culture.		Publishing	
			Company, New Delhi,	
5.	Plant Biotechnology:	Slater <i>et al</i>	Oxford University	2003.
	The Genetic		Press, Oxford, 3 rd	
	Manipulation of		edition	
	Plants			
6.	Plant Biotechnology	Mantell S.H	Cambridge University	1983
		and Smith H	Press, UK, 1st edition	

Mapping with Programme Outcomes

Cos	P01	P02	PO3	P04
CO1	M	S	S	S
CO2	S	M	M	S
CO3	M	M	S	S
CO4	S	S	S	M

SEMESTER VI

Core - IX	B.Sc. Biotechnology	2019 - 2020	
Code: M19UBT09	ENVIRONMENTAL BIOTECHNO	OLOGY	
Credit: 4			

Objectives

To focus on the types of pollution and their microbial remediation.

To provide a foundation for biodiversity and its conservation.

Course Outcomes

By the end of the course, the student should be able to:

CO Number	CO Statement	Knowledge Level
CO1	Describe the scope and importance of environmental biotechnology	K1
CO2	Understand the various types of Pollution and its control methods	К2
CO3	Apply the principles and methods of Biodegradation for removal of toxic components	К3
CO4	Analyze the polluted areas for bioremediation process	K4

UNIT-I

Scope of environmental biotechnology. Pollution – types – sources – effects – Air-water – land – Noise – Thermal – Pesticide – Radioactive. Biotechnological control of air, water and soil pollution. Green house effect, ozone and its importance, global warming and Acid rain. Bio accumulation and Bio magnification of heavy metals. Principles of environment Impact Assessment and environmental monitoring.

UNIT-II

Biodegradation of organic pollutants: Mechanisms. Biodegradation of Xenobiotic compounds: aliphatic, aromatic, polycyclic aromatic hydrocarbons, halogenated hydrocarbons, azo dyes, lignin and pesticides. Surfactants and microbial treatment of oil pollution.

Waste water treatment - Primary, secondary and tertiary treatment of waste water. Biological Treatment of anaerobic and aerobic; methanogenesis, methanogenic, acetogenic, and fermentative bacteria - biofilters, bioscrubbers, membrane bioreactors, biotrickling filters.

UNIT-IV

Bioremediation: Intrinsic bioremediation, Biostimulation and Bioaugmentation. *In situ* and *ex situ* bioremediation technologies. Bioremediation of oil spills. Phytoremediation: types and methods. Use of GMO in bioremediation. Biotransformations and Bioleaching of ores by microorganisms (gold, copper and uranium).

Scope of Biodiversity. Conservation of Biodiversity - Current Practices in conservation of Habitat or ecosystem approaches and Species based approaches. *in situ* and *ex situ* conservation. Role agencies (CBD, IUCN, GEF, IBPGR, NBPGR, WWF, FAO, UNESCO and CITES) for conservation of biodiversity.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Textbook of	P. K.	I K International	2010
	Environmental	Mohapatra	Publishing House Pvt.	
	Biotechnology		Ltd.	
2.	Environmental	V.Kumaresan	Saras Publications,	2014
	Biotechnology	and	A.R. Camp Road,	
		N.Arumugam	Periyavilai, Kottar Post,	
			Nagercoil, Tamil Nadu	
			629002.	
3.	Environmental	S.N.Jogdand,	3rdedition, Himalaya	2004
	biotechnology		publication, New Delhi.	
	(Industrial			
	pollution			
	management) -			
4.	Environmental	S.K.Agarwal	2 nd Edition, TBH	1999
	biotechnology.		publication, New Delhi.	

REFERENCE BOOKS:-

S. No.	Title of the	Author	Publishing	Year of
	Book		Company	Publication
1.	Environmental	Daniel Vallero	2 nd Edition,	2015
	Biotechnology-		Academic Press	
	A Biosystems			
	Approach			
2.	Waste water	Metcalf&Eddy,	4 th edition, Tata	2005
	engineering	Franklin	McGraw Hill	
	treatment and	L.Burton,	publication	
	reuse	H.DavidStensel,		
3.	Ecology and	EcEldowney, S.	Longman Scientific	1993
	Biotreatment	Hardman D.J.	Technical.	
		and Waite S.		
4.	Bioremediation	Baker K.H. and	McGraw Hill Inc.,	1994
		Herson. D. S		
5.	Environmental	Ralph Mitchell	John Wiley & Sons,	2010
	Microbiology	and Ji-Dong	Inc., Hoboken, New	
		Gu	Jersey	

Mapping with Programme Outcomes

Cos	P01	PO2	P03	P04
CO1	M	M	S	S
CO2	S	M	M	S
CO3	M	S	M	S
CO4	S	S	S	M

SEMESTER VI

Elective-II	B.Sc. Biotechnology	2019 - 2020
Code: M19UBTE05	FOOD BIOTECHNOLOGY	
Credit: 4		

Objectives

To impart knowledge about food processing techniques, microbes associated with food and general procedure for food plant design, operation and quality checking.

Course Outcomes

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number	Co Statement	Level
CO1	Describe about scope and important of food biotechnology	K1
CO2	Understand the various types of food borne pathogens, food colorants and maintenance of food quality in food industry	K2
CO3	Apply the basic principles and methods for food productions	К3
CO4	Analyze the various forms of food quality control measures	К4

UNIT-I

Introduction, scope and important of food biotechnology. Microorganisms associated with food - bacteria, fungi & yeast. Enzymes in food preparation. Food contaminations. Food preservation & Food spoilagetypes. Canning of foods.

UNIT-II

Food borne diseases and prevention – infection, in-toxification – Salmonellosis, poliomyelitis. Food colors (natural and artificial food colourants), Food flavoring agents.

Food engineering operations: Characteristics of food raw materials, preparative operations in food industry, cleaning of food raw materials, sorting of foods, grading of foods.

UNIT-IV

Food quality: Sensory evaluation of food quality, quality factors for consumer safety, food safety standards. FSSA, HACCP and FDA. Processing plant - Cleaning and sanitation methods.

UNIT-V

General principle, plant design – design, construction, functionality of building, design & fabrication of equipment. Plant layout Pest proofing/fumigation methods. Water supply to food processing unit.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Food Microbiology	William C.Frazier, Dennis C. Westhoff	McGraw Hill Publications	2017
2.	Fundamentals of Food Engineering	D.G. Rao	PHI Learning Pvt. Ltd.	2010

REFERENCE BOOKS:

S. No.	Tide of the Dools	Author	Publishing	Year of
	Title of the Book		Company	Publication
1.	Food	Yiu Hui & G.	Wiley-Inter	1995
1.	Biotechnology	Khachatourians	science	1995
2.	Fundamentals of Food Microbiology	Bibek, Laramie & Bhunia	CRC Press	2004
3.	Food Processing & Preservation	B. Siva	PHI Learning Pvt. Ltd.	2011

Mapping with Programme Outcomes

Cos	P01	P02	P03	P04
CO1	M	M	M	S
CO2	M	M	S	S
CO3	S	S	M	M
CO4	S	S	S	M

SEMESTER VI

Elective-II	B.Sc. Biotechnology	2019 - 2020	
Code: M19UBTE06	MICROBIAL DISEASE AND CO	MICROBIAL DISEASE AND CONTROL	
Credit: 4	ATOMODINE DIOZNOE INVO	111102	

Objectives

To provide a brief knowledge about microbial pathogens (viral, bacterial, fungal, protozoan and parasitic) and its control measures.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Describe the various types of microbial pathogens and its control measures	K1
CO2	Understand the host microbial interactions and pathogenesis	К2
CO3	Solve the microbial infections and its prevention measures	К3
CO4	Analyze the clinical Specimens for disease identification and its treatment process	K4

UNIT-I

Microorganisms - microbial interactions - pathogens. General epidemiology - pathogenesis - pathology - diagnostic procedure - clinical manifestation - prevention and control measures.

UNIT-II

Virus: HIV, Pox virus, and *Picorna* virus -Epidemiology – pathogenesis - pathology - diagnostics procedure - clinical manifestation - prevention and control measures.

UNIT-III

Bacteria: *Streptococcus, Staphylococcus* and *Salmonella* – Epidemiology - pathogenesis - pathology - diagnostic procedure - clinical manifestation - prevention and control measures.

UNIT-IV

Fungi: *Aspergillus, Candida* and *Microspora*-Epidemiology -pathogenesis-pathology -diagnostic procedure - clinical manifestation-prevention and control measures.

UNIT-V

Protozoa: *Entamoeba histolytica*, *Plasmodium* species and *Trypanosoma gambiense* – Epidemiology – pathogenesis - pathology - diagnostic procedure - clinical manifestation-prevention and control measures - vectors.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publisher	Year of	
				Publication	
	Medical Microbiology:		Churchill Livingstone	1992	
	A Guide to Microbial	David Green Wood			
1.	Infections :	Richard slack &			
1.	Pathogenesis,	John Peuthrer			
	Immunity, Laboratory	John Federici			
	Diagnosis and Control				
			Jaypee Brothers		
2.	Paniker'S Textbook of Medical Parasitology	Paniker and Sougata Ghosh	Medical	2013	
2.			Publishers (P)		
			Ltd.		
3.	Textbook of	Anantanarayan &	Universities	2017	
Ο.	Microbiology	Panekar	Press	2017	
	Principles of		Hodder Arnold;		
4.	Bacteriology, Virology	Wilson & Topley	8th Revised	1990	
	and Immunity		edition		
			Jaypee Brothers		
5.	Textbook of Medical	Jagdish Chander	Medical	2018	
	Mycology	jagaisii dilaliaci	Publishers;	2010	
			Fourth edition		

REFERENCE BOOK:

S. No.	Title of the Book	Author	Publisher	Year of Publication	
1.	Medical Microbiology	Jawetz Melnickand	MeGraw-Hill	2013	
		Adelbergs - Carroll	Company		
2.	Textbook of Virology	A. J. Rhodes, C. E.	Williams &	1962	
		van Rooyen	Wilkins		
3.	Medical Microbiology	Geo. F. Brooks,	McGraw Hill		
		Karen C. Carroll,	Education; 26 edition	2013	
		Janet S. Butel,		2013	
		Stephen A. Morse	euluon		

Mapping with Programme Outcomes

Cos	P01	PO2	PO3	P04
CO1	S	S	S	S
CO2	S	M	S	S
CO3	S	S	S	M
CO4	S	S	S	M

SEMESTER VI

Elective- II	B.Sc., Biotechnology 2019 - 20		
Code: M19UBTE07	PHARMACEUTICAL BIOTECHN	PHARMACEUTICAL BIOTECHNOLGY	
Credits: 4	I III MANAGEO I ICALE BIO I ECITA	OLGI	

Objectives

To focus on fundamental principles of Pharmacology, measurement of drug action.

To understand chemotherapeutic drugs mechanism, toxicology, drug evaluation.

To impart knowledge about therapeutic protein and tissue engineering.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Describe the fundamental principles of Pharmacology, drug classification and drug action and pharmacokinetics of chemotherapeutic drugs	K1
CO2	Understand the knowledge of Chemo therapeutic drugs, anti-cancer and anti Inflammatory drugs.	K2
CO3	Apply the techniques for production of pharmaceutical products	К3
CO4	Analyze the skill for production various types of anti-drugs	K4

UNIT-I

History & Principle of pharmacology. Drug nomenclature & Classification systems. General Principles of Drug action Pharmaco kinetics, Pharmaco dynamics, measurement of drug action.

UNIT-II

Chemo therapeutic drugs - Protein synthesis inhibitors, Antibacterial, antifungal, antiprotozoal, antiviral, Antihelmithic. chemotherapy in anticancer and antiinflammatory drugs.

UNIT-III

Techniques of r-DNA technology for production: Insulin, HGH, GRF, Erythropoietins, IFN, TNF, Interleukins, Clotting factor VIII.

UNIT-IV

Production of Ergot alkaloids, Probiotics, Production of recombinant vaccines. ISO standard for industrial production.

UNIT-V

Protein and tissue engineering. Therapeutic proteins – Formulation, delivery and stability. Pharmaceutical bio-assay – toxin detection, antiviral and anticancer bioassay.

TEXT BOOKS:

C No	Title of the Book	Author	Dublishing Company	Year of
S. No.			Publishing Company	Publication
1.	A concise Text Book	N.Murugesh	Sathya Publishers,	2014
	of Pharmacology, 6th		Madurai	
	Ed.			
2.	A Text Book of		S.Chand& Co Ltd, New	1993
	Biotechnology	R.C. Dubey	Delhi.	

REFERENCE BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Pharmaceutical Biotechnology	S.S. Purohit, Kakrani, Saluja	Agrobios, India	2003
2.	Pharmacology	Mary J. Myuk, Richard, A.Hoarey, Pamala	Lippinwitt Williams edition	2014
3.	Pharmacology	H.P. Rang, M.M. Pale, J.M. Moore	Blackwell Publishing Ltd (Churchill Livingston)	2003
4.	Integrated pharmacology	Page, Curtis, Sulter, Walker, Halfman.	Mosby Publishing co	2006
5.	Principles of Pharmacology	D. Golan, A. Tashjian, E.Armstrong, J.Galanter, A.W.Armstrong, R. Arnaout and H.Rose.	Lippincott Williams and Wilkins.	2005

Mapping with Programme Outcomes

Cos	P01	P02	P03	P04
CO1	M	M	S	S
CO2	S	S	S	S
CO3	S	S	S	S
CO4	M	M	S	M

SEMESTER VI

Elective – II	B.Sc. Biotechnology	2019 - 2020
Code: M19UBTE08	INDUSTRIAL SAFETY	
Credit: 4		

Objectives

To teach student the concept of Industrial Safety and provide useful practical knowledge for workplace safety.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Describe the industrial plant design and basic rules	K1
CO2	Understand the chemical hazards and safety	K2
CO3	Apply the knowledge about analysis various types of hazards	КЗ
CO4	Analyze the mechanisms of biosafety measurements in industry	K4

UNIT-I

Site selection, plant layout- design for ventilation - basic rules and requirements which govern the chemical industries – social environmental setup – tolerance limit of the society.

UNIT-II

Chemical hazards classification – hazards due to fire and explosion – safety analysis – chemical and job safety – safe handling and operation of materials and machineries.

UNIT-III

Types of hazard analysis – hazard identification – HAZOP – hazard survey – Fault tree analysis - event tree analysis.

UNIT-IV

Effective steps to implement safety procedure – periodic advice and constant maintenance – personal protective equipments- types – fire fighting equipments.

UNIT - V

Introduction – biosafety issues in Biotechnology – Historical background – primary contaminants for biohazards biosafety guidelines and regulations (National and International) – operation of biosafety guidelines and regulation of Government of India – risk analysis – risk assessment – risk management.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publisher	Year of
				Publication
1	Industrial safety	Blake R.P.	Hall Inc. New	1963
1.	Prentice	Diake K.P.	Jersey, 2nd Edition	1903

REFERENCE BOOKS:

S. No.	Title of the Book	Author	Publisher	Year of
				Publication
	Safety and Hazard	Fawcett		
1.	prevention in	H.H. and	Inter sciences	1965
	chemical operation	Wood W.S.		

Mapping with Programme Outcomes

Cos	P01	PO2	P03	P04
CO1	S	S	M	S
CO2	S	S	S	M
CO3	S	S	M	M
CO4	M	M	S	M

SEMESTER VI

Core Practical-VII	B.Sc. Biotechnology 2019 - 2020	
Code: M19UBTP07	PRACTICAL - VII - PLANT AND ANIMAL	
Credit: 3	BIOTECHNOLOGY	

Objectives

To provide hands on training in the field of plant and animal biotechnology with familiarize the following techniques like plant and animal tissue culture media preparation, protoplast isolation, genomic DNA isolation, trypsinization, chick embryo fibroblast culture, virus cultivation.

Plant Biotechnology

- 1. Aseptic culture techniques for establishment and maintenance of cultures.
- 2. Tissue culture media preparation: Preparation of stock solutions of MS, Whites and Gamborg media.
- 3. Establishment of meristem culture using MS medium
- 4. Isolation of protoplasts.
- 5. Establishment and maintenance of callus culture.
- 6. Establishment and maintenance of suspension culture.
- 7. Synthetic seeds (Entrapment method).
- 8. Isolation of genomic DNA from plant.

Animal Biotechnology

- 9. Preparation & sterilization of animal cell culture media: balanced salt solution and DMEM.
- 10. Disaggregation of tissues Trypsinization.
- 11. Culture of chick embryo fibroblast (monolayer).
- 12. Viability test and cell counting.
- 13. Inoculation of virus and observation.
- 14. Applications of CO₂ incubator & inverted microscope.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Plant Biotechnology laboratory Manual	Anjana,R and Roy,P.P	Kerala Agricultural University, Ernakulum, Kerala	2014
2.	Biotechnology Procedures and Experiments Handbook	S. Harisha,	Infinity Science Press LLC. and Laxmi Publications Pvt. Ltd	2007
3.	A Practical Manual On Basic Techniques In Biotechnology & Nanotechnology	S. R. Madhan Shankar & E. M. Rajesh	International E – Publication	2013

Mapping with Programme Outcomes

Cos	P01	PO2	P03	P04	P05
CO1	M	S	M	S	S
CO2	S	S	S	M	S
CO3	M	S	S	M	S
CO4	S	S	M	M	S
CO5	S	M	S	M	M

SEMESTER VI

Core Practical-VIII	B.Sc. Biotechnology 2019 - 202	
Code: M19UBTP08	PRACTICAL-VIII - ENVIRONMENTAL	
Credit: 3	BIOTECHNOLOGY	

Objectives

To examine water quality parameters from water samples collected from polluted environment by using biotechnological methods.

- 1. Isolation and enumeration of microorganism from air
- 2. Isolation of halophiles
- 3. Isolation of heavy metal resistance microorganisms
- 4. Determination of soil and water pH
- 5. Determination of dissolved sulphate in water
- 6. Determination of residual chlorine
- 7. Analysis of TDS in effluent
- 8. Estimation of total solids in the effluent sample
- 9. Isolation of coliforms from water
- 10. Dissolved oxygen (DO) Experiment
- 11. Biochemical Oxygen Demand (BOD) Experiment
- 12. Chemical Oxygen Demand (COD) Experiment

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Aquatic Ecology	Trivedy R.K and Ragothaman G	Published by Agrobios (India)	2007
2.	Enviromental Science A Practical Manual	G. Swarajya Lakshmi, P. Prabhu Prasadini and Ramesh Thatikunta	Bs Publications	2009
3.	A Lab Text Book On Environmental	A.K. Jain, Era Upadhyay and Anupam	School of Applied. Science Ansal Institute of Technology,	2011

REFERENCE BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Environmental microbiology: a laboratory manual.	Pepper, I. L., Gerba, C. P. and Brendecke, J. W.	Academic Press, San Diego, US	1995
2.	Environmental Biotechnology Laboratory Manual,	Ismail Saadoun,	Department of Applied Biological Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid- 22110,	2008
3.	Environmental Microbiology Methods and Protocols	John F. T. Spencer and Alicia L. Ragout de Spencer.	Humana Press Inc. Totowa, New Jersey 07512	2004
4.	Environmental Microbiology A Laboratory Manual,	I.L. Pepper and C.P. Gerba	2 nd edition: Elsevier Academic Press	2004

Mapping with Programme Outcomes

Cos	P01	P02	P03	P04
CO1	M	M	S	S
CO2	S	M	M	S
CO3	M	S	M	S
CO4	S	S	S	M

SEMESTER VI SKILL ENCHANCEMENT COURSES - V

SEC - IV	B.Sc. Biotechnology	2019 - 2020
Code: M19UBTS04	SEC - IV - NANO-BIOTECHNO	LOGY
Credit: 2		

Objectives

To understand the methods of nanoparticles preparation, characterization and its applications in various fields of science for the welfare of human as well as for environment.

Course Outcomes

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge Level
Number	Number	
CO1	Describe basic concepts and terminologies of	K1
COT	Nanobiotechnology	KI
CO2	Understand the nanomaterials preparation	K2
002	and its uses in biological fields	112
	Apply knowledge about nanomaterials,	
CO3	biosensors, drug designing and imaging	К3
	techniques in modern medicine	
CO4	Analyze the various types of nano drugs and	K4
004	its delivery systems.	IVT

UNIT-I

Nanobiology - Concepts, definitions, prospects. Biological Nano objects –DNA, protein, lipids. Biological networks. Nanoparticles and nanocomposites.

UNIT-II

Methods of Nanobiotechnology - XRD, FT-IR, AFM, Scanning Probe Electron Microcopy, Lithography.

UNIT-III

Biosensors – definition, scope and types. Potential, Electrochemical and Biomembrane based sensors. Imaging techniques - digital & molecular imaging.

UNIT IV

Drug delivery systems – Polymer therapeutics - Polymer drug conjugates; polymericmicelles, Liposome. Determination of mechanical properties - Mechanical testing, Elasticity, Toughness.

UNIT-V

Application of Nanobiotechnology in medicine, Drug designing and Cancer treatment. Medical, Social and Ethical considerations of Nanobiotechnology.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
	Principles and		Syrawood Publishing	
1.	Practices of	Giorgio Salati	House	2016
	Nanobiotechnology			
2.	An Introduction to	Yashwanth	Dools Englass	2017
	Nanobiotechnology	Kumar	Book Enclave	2017

REFERENCE BOOKS:

S. No.	Title of the Book	Author	Publishing	Year of
3. NO.	Title of the book	Author	Company	Publication
	Biomaterials	Buddy D. Ratner,		
	Sciences: An	Allan S. Hoffman,	Academic Press, Elsevier	2012
1.	Introduction to	Frederick J. Schoen		
	Materials in	and Jack E.		
	Medicine	Lemons.		
	Lehninger's	David L. Nelson and		
2.	Principles of	Michael M. Cox		2006
	Biochemistry	Michael M. Cox		
3.	Nanobiotechnolog	Christof M.	Wiley VCH	2004
3.	y: Concepts,	Niemayer, Chad A.	publishers	2004

applications and Mirkin

perspectives

Bionanotechnolog

4. y: Lessons from David. S. Goodsell Jhonwiley 2006

Nature

Mapping with Programme Outcomes

Cos	P01	P02	PO3	P04
CO1	M	S	M	M
CO2	S	S	M	M
CO3	S	M	M	S
CO4	S	M	M	S

SEMESTER VI

Self-Employment Course

JOC-I	B.Sc. Biotechnology	2019 - 2020
Code: M19UBTJ01	DIAGNOSTICS BIOTECHNOLOGY	
Credit: 3		

Objectives

To Understand the common procedures used in disease diagnosis To be familiar with various types of diseases diagnosis methods.

Course Outcomes

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number	Co Statement	Level
CO1	Describe the techniques used for the diagnostic using enzymes	K1
CO2	Understand the concept of molecular techniques used diagnosis of diseases	K2
CO3	Apply the knowledge about diagnosis of antigen and antibody in clinical laboratory	К3
CO4	Analyze the pathogen by using advanced molecular tools	K4

UNIT-I

Enzyme Immunoassays: Enzymes available for enzyme immunoassays, conjugation of enzymes. Solid phases used in enzyme immunoassays. Types of Immunoassays (Homogeneous and heterogeneous). Uses of polyclonal or monoclonal antibodies in enzymes immuno assays. Applications of enzyme immunoassays in diagnostic microbiology

UNIT-II

Molecular methods for diseases diagnostics- PCR, RFLP, Nuclear hybridization methods, Single nucleotide polymorphism and plasmid finger printing in clinical microbiology – chemotherapy. Susceptibility tests- Microdilution and macro-dilution methods and diffusion.

UNIT-III

Automation in microbial diagnosis, rapid diagnostic approach including technical purification and standardization of antigen and specific antibodies. Concepts and methods in idiotypes. Anti-idiotypes and molecular mimicry and receptors. Epitope design and their applications. Immunodiagnostic tests - Immuno florescence and Radioimmunoassay.

UNIT-IV

Prenatal diagnosis - Invasive techniques and Non-invasive techniques - Diagnosis of pathogenic microbes: Classical and modern methods-Diagnosis using protein and enzyme markers, DNA/RNA based diagnosis - Molecular markers - Microarray technology - genomic and cDNA arrays. GLC, HPLC, Electron microscopy, flow cytometry and cell sorting. Transgenic animals.

UNIT-V

Pathogen Diagnostic techniques: Diagnosis of DNA and RNA viruses. Pox viruses, Adenoviruses, Rhabdo Viruses, Hepatitis Viruses and Retroviruses. Diagnosis of Protozoan diseases: Amoebiosis, Malaria, Trypnosomiosis, Leishmaniasis. Study ofhelminthic diseasesFasciola hepatica and Ascaris lumbricoides. Filariasis and Schistosomiasis.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Tietz Fundamentals of	Burtis, Carl A. and Bruns, David E	Elsevier	2014
	Clinical	Bruits, Daviu E		
	Chemistry and			
	Molecular			
	Diagnostics			
2.	Immunology and	Jayanti Tokas	Laxmi	2015
	Molecular		Publications	
	Diagnostics			
3.	Molecular	Lela Buckingham	F.A. Davis	2007
	Diagnostics	and Maribeth L.	Company	

Flaws

4. Single Cell Alan R. Thornhill Humana 2007

Diagnostics:
Methods and
Protocols: 132
(Methods in
Molecular
Medicine)

Press;

Mapping with Programme Outcomes

Cos	P01	P02	P03	P04
CO1	M	S	M	S
CO2	S	M	S	M
CO3	M	S	M	M
CO4	S	M	S	S

SEMESTER VI

JOC-I	B.Sc. Biotechnology	2019 - 2020
Code: M19UBTJ02	FOOD PROCESSING TECHNO	LOGY
Credit: 3	FOOD FROCESSING TECHNOL	

Objectives

To develop skill in food processing (fruits and vegetables), operation and maintenance of modern equipments.

To understand the quality assurance and process of packaging, storing and marketing.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Describe about food processing, preservation and packing	K1
CO2	Understand the basic principles of composition and nutritive value of pulses and cereals	K2
CO3	Apply knowledge about fruit, vegetable Processing and preservation by various techniques	КЗ
CO4	Analyze the different types flusy, sea food processing and storage products	K4

UNIT-I

Definition and scope of Food processing, Historical evolution of food processing technology. Fundamentals of food preservation – Preservation, dehydration, Packaging and canning.

UNIT-II

Fruits and Vegetables - Processing- Classification, Pre- Processing, Processing and Preservation- Size reduction, Mixing, Separation, Concentration, Freezing and Refrigeration, Drying and Dehydration, Chemicals, Processing by using Pulsed Light and Irradiation.

UNIT-III

Pulses and cereals - Processing of pulses, composition and nutritive value, processing methods, toxic constituents. Processing of cereals-structure, composition and nutritive value, Processing methods- fermented and non-fermented products.

UNIT-IV

Flusy and sea food - Meat, Poultry and Egg - Pre-Processing; Processing and Preservation- Smoking, Canning, Drying, Cooling, Canning Pulsed Electric Field processing; Sea food - Types; Pre-Processing; Processing and Preservation- Dielectric, Ohmic and Infra-red heating.

UNIT-V

Dairy and oils - Dairy Processing- Milk Pre-Processing; Processing and Preservation - Separation, Homogenization, Pasteurization, Standardization, Sterilization (UHT), Evaporation (Spray Drying), Chilling, Freezing and Refrigeration. Oil seed Technology-Types; Pre-Processing; Processing & Preservation- Extraction of oils, meal concentrates and Value Addition.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
Man	Guide to Quality lagement Systems for Food Industries.	Early R	Blackie Academic	1995
2.	Experiments in Food Process Engineering,	H. Pandey, H.K. Sharma, R.C. Chouhan, B.C. Sarkar and M.C.	CBS Publishers and Distributors	2004
3.	Handbook of analysis and quality control for fruits and vegetables products	Bera S. Ranganna,	Mcgraw Hill Pub. Co. New York.	2005
4.	Food Process Engineering: Theory and Laboratory Experiments,	S. K. Sharma, S.J. Mulvaney, and S.S.H. Rizvi	Wiley and Sons	2000

REFERENCE BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1	New methods of Food Preservation,	Gould, G.G.	Blackie Academic & Professional, Chennai.	1996
2	Food Preservation Techniques Food Science	Peter zeuthena nd Leif Bogh- Sorensen,	Wood Head Publishing Ltd., Cambridge, England	2005
3	and Processing Technology vol- 2, Commercial processing and	Mirdula Mirajkar, Sreelatha Menon	Kanishka publishers, New Delhi	2002
4	packaging, The complete Technology book on processing, dehydration, canning, preservation of fruits and vegetables, , Delhi	NIIR Board,	National Institute of Industrial Research	2005

Mapping with Programme Outcomes

Cos	P01	PO2	PO3	P04
CO1	S	M	S	S
CO2	M	S	M	S
CO3	S	S	M	M
CO4	S	M	S	M

SEMESTER III

Non-Major Elective Courses

NMEC – I	B.Sc. Biotechnology	2019 - 2020
Code: M19NBT01	NMEC - I - HEALTH AND HYG	HENE
Credit: 2		

Objectives

To focus on health, maintenance of body weight, dieting.

To knowledge about personal hygiene, food contamination, role of International control of health and WHO.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Describe the basic concept of health and ecological aspects in human health	K1
CO2	Understand the concept of body weight, BMI and diet	К2
CO3	Apply the necessity of exercise, weight control program and dieting	К3
CO4	Analyze the food contamination and methods of disease transmission	K4

UNIT-I

Health-definitions of health, dimensions of health, concept to fwellbeing, determinants of health, and ecology of health.

UNIT-II

Body weight and composition for Health and Sports – Ideal body weight, values and limitations of the BMI, composition of the body; Diet during training, dietary supplements for athletes.

UNIT-III

Exercise and Health related fitness-Health related fitness, physical activity for health benefits, types of exercise, effective weight controldieting or exercise; weight reduction program for young athletes.

UNIT-IV

Hygiene-Meaning and importance; Hygienic practices of employees, personal hygiene and contamination of food products, methods of disease transmission.

UNIT-V

Drug Abuse and health laws – Hygiene of eating and drinking, Ventilation and lighting, Health laws for food safety and hygiene, International control of health, WHO, Health destroying habits and addictions - Pan, Ganja, Drinking, Smoking, Tea and Coffee.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing	Year of
5. 110.			Company	Publication
1.	Principles of food sanitation	Marriott, G. Norman	Van Nostrand Reinhold company, New York	1985
	Catering		Wiley	
2.	management- Anintegrated approach	Sethi,M. and Matha,S.,	EasternLtd., New Delhi.	
3.	Test book of preventive and social medicine	K. Park	15 th edition, MIS Banarsidas Bhano Publishers,	1997.
4.	Nutrition for Health, fitness and Sports	Melvin H. Williams	Jabalpur 7 th edition, MC Graw Hill international Edition	2005
5.	Nutrition and Metabolism	Michael J.GIbney, lan A Macdonald and Helen M.Roche	Blackwell Publishing company, Bangalore	2008

Mapping with Programme Outcomes

Cos	P01	P02	PO3	P04
CO1	S	S	M	M
CO2	S	S	M	S
CO3	M	S	S	S
CO4	S	S	S	M

SEMESTER III

NMEC-I	B.Sc. Biotechnology 2019		
Code: M19NBT02	NMEC - I - FOOD AND NUTR	ITION	
Credit: 2			

Objectives

To describe the basic aspects of nutrients and to understand the relationship between food, nutrition and health.

Course Outcomes

On the successful completion of the course, students will be able to

CO	CO Statement	Knowledge
Number	Co Statement	Level
CO1	Describe the basic concepts of food sources, and nutritional deficiency	K1
CO2	Understand the concepts of composition, functions, sources of food and nutrition	К2
CO3	Discover nutritional elements of various food sources	К3
CO4	Analyze macro and micro-minerals with sources, and effect of deficiency	K4

UNIT-I

Concept of Nutrition - Health, nutritional status and malnutrition.

Carbohydrates - Definition, composition, functions, maintenance of blood sugar levels, requirement, sources, digestion and absorption; Dietary fiber-Definition, classification, physiological effects and sources.

UNIT-II

Proteins - Definition, composition, nutritional classification of proteins and amino acids, functions, sources, requirements, digestion and absorption. Lipids - Definition, composition, functions, sources, requirements, digestion and absorption. Essential fatty acids - Definition, functions, sources and effects of deficiency.

UNIT-III

Energy - Definition, units of measurement, direct and indirect calorimetry; Determination of energy value of food, Total Energy requirement, Factors affecting physical activity, Factors affecting Basal Metabolic Rate.

UNIT-IV

Nutritional elements: Functions, sources, requirements and effects of deficiency- Calcium, Phosphorous, Iron, Iodine, Copper, Fluorine, Zinc, Sodium and Potassium.

UNIT-V

Fat soluble Vitamins –Vitamin A, D, E and K: Functions, requirements, sources and effects of deficiency. Water soluble Vitamins – Thiamine, riboflavin, niacin, ascorbic acid, folic acid, vitamin B6 and vitamin B12: Functions, requirements, sources and effects of deficiency. **REFERENCE BOOKS:**

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Text Book of Bio- Nutrition, Fundamental and	Paul. S	RBSA Publishers	2003
2.	Management Nutrition and Diet Therapy (6 Edition)	Sue Rodwell Williams	C.V. Melskey Co.,	2000
3.	Text Book of Human Nutrition	Mahtab.S.Bamji, KamalaKrishnas wamyandG.N.VB rahmam	Oxford and IBH Publishing Company	2009

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing	Year of
3. NO.	Title of the book	Author	Company	Publication
	Fundamentals of	Sumathi R.	New Age	
1.	Foods and Nutrition	Mudambi,	International (P)Ltd,	1997
	(3 rd edition)	Rajagopal, M.V	Publishers,	
	Nutrition Science (5 th edition)	SrilakshmiB	New Age	
2.			International (P)Ltd,	2016
			Publishers	
	Normal Nutrition,			
3.	Curing diseases	N4 1 17	CBS Publications	2005
	through diet (1st	Mangala Kango	CDS Publications	2005
	edition)			

Mapping with Programme Outcomes

Cos	P01	PO2	PO3	P04
CO1	S	S	S	M
CO2	M	M	S	S
CO3	M	S	S	S
CO4	S	S	M	M

SEMESTER IV

Non-Major Elective Courses

NMEC-II	B.Sc. Biotechnology	2019 - 2020
Code: M19NBT03	NMEC - II - ENTREPRENEURS	HIP IN
Credit: 2	BIOTECHNOLOGY	

Objectives

To gain entrepreneurial skills in the field of mushroom cultivation, vermicomposting, hydrophonics, aquaphonics, home gardening, roof top gardening, sericulture and apiculture venture creation.

Course Outcomes

By the end of the course, the student should be able to:

CO Number	CO Statement	Knowledge Level
CO1	Describe the scope and importance of entrepreneurship in biotechnology	K1
CO2	Understand the principles, methods and application of mushroom, vermicomposting, SCP cultivation	K2
CO3	Apply the methods of vermicomposting, mushroom, SCP and <i>Azolla</i>	К3
CO4	Analyze the various nutritional values of biological products	K4

UNIT-I

Scope and importance of entrepreneurship; Introduction to bioentrepreneurship – types of bio-industries – biopharma, bioagri, bioservices and bioindustrial; innovation – types, out of box thinking; skills for successful

entrepreneur – creativity, leadership, managerial, team building, decision making; opportunities for bioentrepreneurship.

UNIT-II

Introduction to mushroom fungi, nutritional value, edible and poisonous type, edible mushrooms -- Pleurotus, Volvariella and Agaricus, medicinal value of mushrooms. Preparation of culture, mother spawn production, multiplication of spawn, cultivation techniques, harvesting, packing and storage.

UNIT-III

Vermiculture and Vermicomposting: Introduction, Collection of wastes and their segregation and processing. Bed preparation for Anaerobic and Aerobic composting Earthworm collection and application on beds Vermicompost collection, Earthworms separation, Air drying of vermicompost, sieving and storing. Vermi-wash collection and processing.

UNIT-IV

Introduction to SCP production – Pond construction, Outdoor mass cultivation technology of *Spirulina*, Optimal conditions for mass cultivation, Development of *Spirulina* culture, Harvesting and Drying process of *Spirulina* biomass. *Azolla* Fodder - Introduction, Cultivation and harvesting methods. Advantages and nutritional values of *Azolla*.

UNIT-V

Farming – hydrophonics and aquaphonics, home gardening, roof top gardening. Sericulture – Introduction. Mulberry cultivation and silk worm rearing. Introduction to Apiculture. Honey Bee types and Life cycle. Bee keeping: Tools and Equipment. Queen rearing. Handling, Collection and preservation of honey. Honey Processing and marketing.

Note: Visiting the following production units and obtained enough trainings from the workshop units/fields such as, mushroom, *Spirulina* and *Azolla* cultivation, Honey bee keeping / Honey Processing / Honey Marketing, Hydrophonics, roof gardening, vermicomposting and sericulture unit.

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	The Practice of Entrepreneurship	G.G. Meredith, R.E.Nelson and P.A. Neek,	ILO, New Delhi	1982
2.	Management of Small Scale Enterprises,	Vasant Desai,	Himalaya Publishing House	2004
3.	Entrepreneurship: Successfully	Bruce R Barringer and R Duane Ireland,	Launching New Ventures, 3 rd ed., Pearson Edu.,	2013
4.	Mushrooms Cultivation, Marketing and Consumption	Manjit Singh Bhuvnesh Vijay Shwet Kamal G.C. Wakchaure	Directorate of Mushroom Research (Indian Council of Agricultural Research) Chambaghat, Solan – 173213 (HP)	2011
5.	Yuvagreen Azolla Bed for Azolla Cultivation	Yuvagreen	Daya Publishing House, New Delhi	2008
6.	Hydroponics: Hydroponics Gardening Guide - from Beginner	Thomas Thatcher	Breakthough Publishing, USA	2016
7.	Roof Terrace Gardening	Michele Osborne	Aquamarine; New edition, India	2012

REFERENCE BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Enterprise for life scientists: Developing innovation and entrepreneurship in the biosciences.	Adams, D. J., and Sparrow, J.	Bloxham: Scion	2008
2.	Biotechnology entrepreneurship: Starting, managing, and Leading biotech companies.	Shimasaki, C. D.	Amsterdam: Elsevier. Academic Press is an imprint of Elsevier.	2014

3.	Honey Bee Biology and Beekeeping,	Dewey M. Caron	Revised Edition. Wicwas Press, Kalamazoo	2013
4.	The Complete Step-by-step Book of Beekeeping: A Practical Guide to Beekeeping, from Setting up a Colony to Hive Management and Harvesting the Honey.	David Cramp	Lorenz Books. London.	2012
5.	Mushroom Cultivation in India	B .C. Suman and V.P Sharma	Daya Publishing House, New Delhi	2007
6.	Azolla a super organism	Rich Mark Constantino	Kindle Edition, Amazon Asia-Pacific Holdings Private Limited	2009
7.	An Introduction to Sericulture	M. Madan Mohan Rao	BS Publications, New Delhi	2019
8.	Nutraceutical Spirulina: Commercial Cultivation Using Rural Technology in India	Pushpa Srivastava	Aavishkar Publishers, Distributors, Jaipur; First edition	2017
9.	Hydroponics for the Home Grower	Howard M. Resh	CRC Press; 1 st edition USA	2015

Mapping with Programme Outcomes

Cos	P01	P02	PO3	P04
CO1	M	M	S	S
CO2	S	M	M	S
CO3	M	S	M	S
CO4	S	S	S	M

SEMESTER IV

NMEC-II	B.Sc. Biotechnology	2019 - 2020
Code: M19NBT04	NMEC-II - AGRICULTURAL BIO	rechnology
Credit: 2		2011102001

Objectives

To introduce the principles, practices and application of agricultural biotechnology.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Describe the basic principles of crop improvement, plant breeding, micro-propagation in agricultural field	K1
CO2	Understand the mechanism of biological nitrogen fixation, production of bio-fertilizers and applications	К2
CO3	Apply the microbes in bio-fertilizers and bio-pesticides	К3
CO4	Analyze a nutritional value of biofertilizer and plant growth quality modifications	K4

UNIT-I

Introduction to Agricultural biotechnology. Crop improvement hybridization and plant breeding techniques. Micropropagation and plant tissue culture technique and its application in agriculture. Somatic hybridization, haploid production and cryopreservation.

UNIT-II

Mechanism of biological nitrogen fixation process. Production of biofertilizers and applications of rhizobium, azotobacter, azolla and mycorrhiza. Use of plant growth regulators in agriculture and horticulture.

UNIT-III

Microbes based Biofertilizers: Azolla and Anabena, Rhizobium, Azotobacter, Azospirillum, Mycorrhiza. Biopesticide – Trichoderma, BT and NPV.

UNIT-IV

Biodiversity Legislation in India; Indian Biodiversity Act and provisions on crop genetic resources. Convention on Biological Diversity (CBD) and Cartagena protocol on Biosafety. Conservation strategies for seed gene bank; Impact of GE crops on Biodiversity.

UNIT-V

Transgenic plants in quality modifications–Starch, Oil, Protein, and Golden Rice. Current status of transgenics, Biosafety norms and controlled field trails and release of transgenic (GMO).

TEXT BOOKS:

S. No.	Title of the Book	Author	Publishing Company	Year of Publication
1.	Environmental	GrantW.D.and	Chringor	1981
	microbiology	Long P.E	Springer	1901
	Handbook on	Stuart J.		
2.	Agriculture,	Smyth, Peter	Edward Elgar	2014
2.	Biotechnology and	W.B. Phillips,	Publishing Inc.	2014
	development	David Castle		

REFERENCE BOOKS:

S. No.	Title of the Book	Author	Publishing		Year of
5. NO.	Title of the book	Author	Company		Publication
1	Agricultural	W HD	Daya	Publishing	2005
1.	Biotechnology	Kumar HD	house		2005
2.	Agricultural	Daimahaniaahi	Jaha Daal	Delle:	2007
	Biotechnology	Rajmonanjosm	Isha Books, Delhi		2006
	Text book of		PHI Learn	ing Private	
3.	Agricultural	AhindraNag		J	2008
	Biotechnology		Limited, N	new Dellii	

Mapping with Programme Outcomes

Cos	P01	PO2	PO3	P04
CO1	S	S	S	M
CO2	S	M	S	M
CO3	S	S	S	S
CO4	S	M	M	M

MAHENDRA ARTS & SCIENCE COLLEGE

(Autonomous)

Affiliated to Periyar University, Salem.

Accredited by NAAC with 'A' Grade & Recognized u/s 2(f) and 12(B) of the UGC Act 1956

Kalippatti – 637 501, Namakkal (Dt), Tamil Nadu.

DEPARTMENT OF BIOTECHNOLOGY

List of Courses Focusing on Employability/ Entrepreneurship/ Skill Development (Regulations – 2016)

Programme: B.Sc. Biotechnology

S.No.	Course Name	Course Code	Employability	Entrepreneurship	Skill Development
1.	Computer applications in Biology	M16UBTS01			✓
2.	Biophysics & Bioinstrumentation	M16UBTS02			✓
3.	Applied Statistics	M16USTN01			✓
4.	Applied Microbiology II	M16UMBA02			✓
5.	Bioinformatics	M16UBTS03			√
6.	Health and Hygine	M16UBTN01			√
7.	Food and Nutrition	M16UBTN02			V
8.	Applied Biotechnology	16UBTN03			√
9.	Agricultural Biotechnology	M16UBTN04		√	
10.	Nursery and gardening	M16UBTE03		✓	
11.	Immunology	M16UBT05			√
12.	Industrial Biotechnology and IPR	M16UBTS04	~	=	
13.	rDNA Technology	M16UBT06			✓
14.	Bioprocess Technology	M16UBT07			✓
15.	Environmental Biotechnology	M16UBT09			✓.
16.	Herbal Technology	M16UBTE04		84	✓
17.	Food Biotechnology	M16UBTE05	✓ MAH	PRINCIPAL ENDRA ARTS & SCIENCE (Autonomous)	COLLEG

Kalippatti (PO) - 637 501, Namakkal (D3

S.No.	Course Name	Course Code	Employability	Entrepreneurship	Skill Development
18.	Pharmaceutical Biotechnology	M16UBTE07			√
19.	Biofertilizer Technology	M16UBTE08	✓	v	
20.	Nano Biotechnology	M16UBTS05			✓

Head of the Department

HEAD OF THE DEPARTMENT

Department of Biotechnology,
Mahendra Arts & Science College (Autonomous),
Kalippatti (Po) - 637 501. Tiruchengode (Tk),
Namakkal (Dt). Tamil Nadu. India.

PRINCIPAL MAHENDRA ARTS & SCIENCE COLLEGE

(Autenomous)

Kalippatti (PO) - 637 501. Namakkal (DT)

MAHENDRA ARTS & SCIENCE COLLEGE

(Autonomous)

Kalippatti (PO) - 637 501, Namakkal (DT)

MAHENDRA ARTS & SCIENCE COLLEGE

(Autonomous)

Affiliated to Periyar University, Salem.

Accredited by NAAC with 'A' Grade & Recognized u/s 2(f) and 12(B) of the UGC Act 1956

Kalippatti – 637 501, Namakkal (Dt), Tamil Nadu.

DEPARTMENT OF BIOTECHNOLOGY

List of Courses Focusing on Employability/ Entrepreneurship/ Skill Development (Regulations – 2016)

Programme: B.Sc. Biotechnology

S.No.	Name of the Course	Course Code	Employability/ Entrepreneurship/ Skill development	Year of introduction (during the last five years)
1.	Computer applications in Biology	M16UBTS01	Skill development	2016 - 2017
2.	Biophysics & Bioinstrumentation	M16PBTE01	Skill development	2017 - 2018
3.	Applied Statistics	M16USTN01	Skill development	2017 - 2018
4.	Applied Microbiology II	M16UMBA02	Skill development	2017 - 2018
5.	Bioinformatics	M16UBTS03	Skill development	2017 - 2018
6.	Health and Hygiene	M16UBTN01	Skill development	2017 - 2018
7.	Food and Nutrition	M16UBTN02	Skill development	2017 - 2018
8.	Applied Biotechnology	16UBTN03	Skill development	2017 - 2018
9.	Agricultural Biotechnology	M16UBTN04	Entrepreneurship	2017 - 2018
10.	Nursery and gardening	M16UBTE03	Entrepreneurship	2018 - 2019
11.	Immunology	M16UBT05	Skill development	2018 - 2019
12.	Industrial Biotechnology and IPR	M16UBTS04	Employability	2018 - 2019
13.	rDNA Technology	M16UBT06	Skill development	2018 - 2019
14.	Bioprocess Technology	M16UBT07	Skill development	2018 - 2019
15.	Environmental Biotechnology	M16UBT09	Skill development	2018 - 2019
16.	Herbal Technology	M16UBTE04	Skill development	A2018 - 2019

AHENDRA ARTS & SCIENCE COLLEC (Autonomous) (alippatti (PO) - 637 501, Namakkal (DT

S.No.	Name of the Course	Course Code	Employability/ Entrepreneurship/ Skill development	Year of introduction (during the last five years)
17.	Food Biotechnology	M16UBTE05	Employability	2018 – 2019
18.	Pharmaceutical Biotechnology	M16UBTE07	Skill development	2018 - 2019
19.	Bio fertilizer Technology	M16UBTE08	Employability	2018 - 2019
20.	Nano Biotechnology	M16UBTS05	Skill development	2018 - 2019

Head of the Department HEAD OF THE DEPARTMENT

Department of Biotechnology,
Mahendra Arts & Science College (Autonomous),
Kalippatti (Po) - 637 501. Tiruchengode (Tk),
Namakkal (Dt). Tamil Nadu. India.

Principal

MAHENDRA ARTS & SCIENCE COLLEG

(Autenomous)

Kalinpatti (PO) - 637 501, Namakkal (DT)

MAHENDRA ARTS & SCIENCE COLLEGE

(Autonomous)

Kaliopatti (PO) - 637 501, Namakkal (DT)

MAHENDRA ARTS & SCIENCE COLLEGE

(Autonomous)

Affiliated to Periyar University, Salem. Accredited by NAAC with 'A' Grade & Recognized u/s 2(f) and 12(B) of the UGC Act 1956 Kalippatti – 637 501, Namakkal (Dt), Tamil Nadu.

BACHELOR OF SCIENCE

CHOICE BASED CREDIT SYSTEM

SYLLABUS FOR B.Sc. BIOTECHNOLOGY

For the students PRINCIPA admitted from the Academic Year 2016-2017 onwards & SCIENCE COLLEGE

Kalippatti (PO) - 637 501, Namakkal (DT)

REGULATIONS

1. Objectives of the course:

- To learn the applications of biological agents to provide goods and services for human community by materials processing.
- To equip the practical skills of molecular and genome based techniques.
- To gain knowledge on frontier areas of Biotechnology.
 - To understand the impact of Biotechnology on basic human needs such as
- Agriculture, Industry, Medicine, Environment etc.
- To enrich the knowledge of students on current scenario in Biotechnology

2. Eligibility for Admission:

Candidates seeking admission to the first year Degree course shall be required to have passed PUC/12th Std. / 10+2/ its equivalent with at least Biology and Chemistry as two optional subjects.

3. Duration of the course:

The duration of the course is THREE academic years divided into six semesters under Chiose Based Credit System.

4. Features of CBCS:

Under Choice Based Credit System (CBCS), a set of papers consisting of Core papers, Elective papers, Skill based elective papers and Non-major elective papers are offered. Beside the Core Papers, which are totally related to the major subject, the students have the advantage of studying supportive papers and non-major papers. This provides enough opportunity to the students to learn not only the major subject but also inter disciplinary and application oriented subjects.

5. Credits:

In CBCS, each paper is assigned with a certain number of Credits depending upon the workload of the students. The total Credits to be earned by a student to qualify for the degree is above 140. The credit of the paper is fixed by giving due weightage to the syllabus content and contact hours per week.

6. Evaluation Procedure:

Evaluation is based on Continuous Internal Assessment (**CIA**) test and University Examination. Distribution of marks as follows

THEORY

University examination (UE)	Internal Assessment (IA)
75 marks	25 marks

PRACTICAL

University examination (UE)	Internal Assessment (IA)
60 marks	40 marks

7. Question Paper Pattern

THEORY

Time: 3 Hours Max. Marks: 75

SECTION - A

(Answer ALL Questions) $(10 \times 2 = 20 \text{marks})$

All Question Carry equal marks-2 questions from each unit

SECTION - B

Answer ALL Questions: (5x 5 = 25 marks)

(Internal Choice)

All Questions carry equal marks-2 questions from each unit.

SECTION - C

Answer any THREE out of five (3X10=30 marks)

1 question from each unit

All units in the syllabus should be given equal weightage

PRACTICAL

Time: 6 Hours	Maximum Marks: 60
Major Practical	20 Marks
Minor Practical	10 Marks
Spotters	$5 \times 4 = 20 \text{ Marks}$
Record	5 Marks
Viva-voce	5 Marks

MAHENDRA ARTS AND SCIENCE COLLEGE

(Autonomous)

DEPARTMENT OF BIOTECHNOLOGY

B.Sc., Biotechnology - Course Structure (CBCS Pattern- 2016-2017 Onwards)

Part	Sem.	Paper Code	Title of the Paper	Credits	Lecture Hrs/Wk	Int. Marks	Ext. Marks
Part -I		M16UFTA01	Tamil –I	3	5	25	75
Part –II	-	M16UFEN01	English -I	3	5	25	75
Part –III		M1CUDT01	Maior Call Dialage	5	(25	75
Core -I		M16UBT01	Major -Cell Biology	5	6	25	75
Part –III		M16UBCA01	Allied	4	6	25	75
Allied –I		WITOOBCAUT	Biochemistry – I	†	0	23	13
Part –III	_		Lab in Cell biology		_		
Core	I	M16UBTP01	and Plant biology	-	3	-	-
Practical-I	-						
Part –III		MICUDCADOI	Lab in Diaghandara		2		
Allied Practical–I		M16UBCAP01	Lab in Biochemistry	-	3	-	-
Part –IV							
Value		M16UVE01	Manavalakalai – Yoga	2	2	25	75
Education		WITOU VEOT	Wanavanakanan - 1 Oga	2	2	23	13
Eddedion				17			
Part -I		M16UFTA02	Tamil –II	3	5	25	75
Part –II		M16UFEN02	English –II	3	5	25	75
Part –III		MICHIDITO				25	7.5
Core -II		M16UBT02	Major –Plant Biology	5	5	25	75
Part –III		M16UBCA02	Allied -Biochemistry	4	5	25	75
Allied –II		-11	4	נ	23	13	
Part –IV SBEC –I	II	M16UBTS01	Computer applications in Biology	2	2	<mark>25</mark>	<mark>75</mark>
Value Education		M16UES01	Environmental Studies	2	2	25	75
Part –III Core Practical-I		M16UBTP01	Lab in Cell biology and Plant biology	3	3	40	60
Part –III Allied Practical–I		M16UBCAP01	Lab in Biochemistry	3	3	40	60
				25			
Part –I		M16UFTA03	Tamil –III	3	5	25	75
Part –II		M16UFEN03	English –III	3	5	25	75
Part –III		M16UBT03	Major - Animal	5	5	25	75
Core –III			Biology				
Part –III		M16UMBA01	Allied – Basic	4	5	25	75
Allied –III Part –IV	III		Microbiology Biophysics and		_		
SBEC-II		M16UBTS02	Bioinstrumentation	2	2	<mark>25</mark>	<mark>75</mark>
Part –IV NMEC			NMEC	2	2	25	75
Part –III			Lab in Animal				
Core		M16UBTP02	biology, Genetics and	-	3	-	-
Practical-II			Molecular biology				

Part –III							
Allied Practical–II		M16UMBAP01	Lab in Microbiology	-	3	-	
Fractical-II				19			
Part –I		M16UFTA04	Tamil –IV	3	5	25	75
Part –II	-	M16UFEN04	English –IV	3	5	25	75
Part –III Core -IV		M16UBT04	Major –Genetics and Molecular Biology	5	5	25	75
Part –III Allied –IV		M16UMBA02	Allied – Applied Microbiology	4	5	25	<mark>75</mark>
Part –IV SBEC -III	IV	M16UBTS03	Bioinformatics	2	2	25	75
Part –IV NMEC			NMEC	2	2	25	75
Part –III Core Practical- II		M16UBTP02	Lab in Animal biology, Genetics and Molecular biology	3	3	40	60
Part –III Allied Practical–II		M16UMBAP01	Lab in Microbiology	3	3	40	60
ractical ii				25			
Part –III Core –V		M16UBT05	Immunology	<u>5</u>	<mark>5</mark>	25	<mark>75</mark>
Part –III Core -VI		M16UBT06	rDNA Technology	5	5	25	75
Part –III Core -VII		I MITALIBITAL	Industrial Biotechnology and IPR Technology	5	5	25	75
Elective I	V		Elective	4	5	25	75
Part –IV SBEC -V	-	M16UBTS04	Industrial Biotechnology and IPR	2	4	25	75
Part –III Core Practical- III		M16UBTP03	Lab in Immunology & rDNA Technology	3	3	40	60
Part –III Core Practical-IV		M16UBTP04	Lab in Bioprocess Technology	3	3	40	60
				27			
Part –III Core –VIII		M16UBT08	Plant & Animal Biotechnology	5	5	25	75
Part –III Core -IX		M16UBT09	Environmental Biotechnology	<u>5</u>	<mark>5</mark>	25	<mark>75</mark>
Elective II			Elective	4	5	25	75
Part –IV SBEC -VI	VI	M16UBTS05	Nano-biotechnology	2	2	<mark>25</mark>	<mark>75</mark>
Part –III Core Practical- V		M16UBTP05	Lab in Plant & Animal Biotechnology	3	4	40	60
Part –III Core Practical-VI		M16UBTP06	Lab in Environmental Biotechnology	3	4	40	60

Project	M16UBTPR1	Project	5	5	40	60
Extension activities	M16UEX01	Extension activities	1	0	0	100
			28			
		Total Credits	141			

List of Non Major Elective Courses offered by the Department

		Title of the	Title of the		Marks	
SEM	SEM Paper Code	Paper	Credits	Lecture Hrs/Wk	Int. Marks	Ext. Marks
III	M16UBTN01	Health and Hygiene	2	4	<mark>25</mark>	<mark>75</mark>
111	M16UBTN02	Food and Nutrition	2	4	25	75
IV	M16UBTN03	Applied Biotechnology	2	4	25	75
IV	M16UBTN04	Agricultural Biotechnology	2	4	25	75

List of Elective Papers offered by the Department

					Marks	
SEM	Paper Code	Title of the Paper	Credits	Lecture	Int.	Ext.
				Hrs/Wk	Marks	Marks
	M16UBTE01	Bioethics & Bio-	4	4	25	75
	WITOODILOI	safety	4	4	23	73
	M16UBTE02	Developmental	4	4	25	75
\mathbf{V}	V MITOURIEUZ	Biology	4	4	23	13
	M16UBTE03 Nursery and gardening 4	4	25	<mark>75</mark>		
		gardening	•	•	<u> </u>	13
	M16UBTE04	Herbal Technology	<mark>4</mark>	<mark>4</mark>	<mark>25</mark>	<mark>75</mark>
	M16UBTE05	Food	<mark>4</mark>	<mark>4</mark>	<mark>25</mark>	<mark>75</mark>
	WITOODIEOS	Biotechnology	_ _	<u> </u>	<u> </u>	
	M16UBTE06	Microbial Disease	4	4	25	75
VI	WITOODILOO	and Control	7	7	23	13
V 1	M16UBTE07	Pharmaceutical	4		25	<mark>75</mark>
	WITOODIEO	Biotechnology	<u> </u>	<u> </u>	<u> </u>	13
	M16UBTE08	Biofertilizer	4	<u>//</u>	25	<mark>75</mark>
	WITOODIEOO	Technology	<u>*</u>	"	<u> </u>	13

SEMESTER - I

Part	Paper Code	Title of the Paper	Credits	Lecture Hrs/Wk	Int. Marks	Ext. Marks
Part -I	M16UFTA01	Tamil –I	3	5	25	75
Part –II	M16UFEN01	English -I	3	5	25	75
Part –III Core -I	M16UBT01	Major -Cell Biology	5	6	25	75
Part –III Allied –I	M16UBCA01	Allied Biochemistry – I	4	6	25	75
Part –III Core Practical-I	M16UBTP01	Lab in Cell biology and Plant biology	-	3	-	-
Part –III Allied Practical–I	M16UBCAP01	Lab in Biochemistry	-	3	-	-
Part –IV Value Education	M16UVE01	Manavalakalai – Yoga	2	2	25	75
			17			

CELL BIOLOGY - M16UBT01

UNIT I

Cell as a Basic unit; Classification of cell types; Cell theory; Organization of plant and animals cells; Structural comparison of Microbial, Plant and Animal cells.

UNIT II

Ultra-structure of cells; Sub cellular Organization; structure and function of Cell wall, cell membrane, Cytosol Endoplasmic reticulum and Chloroplast, vacuoles, Peroxisomes, lyzosome.

UNIT III

Chromosomes and cell division: Morphology, Structural organization, ultra Structure of chromosome, specialized chromosomes. Cell cycle, Mitosis, Meiosis, Cellular senescence and applications.

UNIT IV

Specialized cells: Motile cells (amoeboid, ciliary, flagellar movements), nerve Cells and nerve impulse conduction, muscle cells and muscle contraction.

UNIT V

Cell-Cell adhesion, Cell signaling- types- G Protein receptors, Cell membrane traffic, Histological techniques- Sectioning, Embedding and Mounting

- 1. A Text Book of Cell Biology- Aminul Islam. Books and Allied (P) Ltd, Kolkatta. First edition.2011.
- 2. Cell Biology- Powar.C.B, Himalaya publishing house, New Delhi.1983.
- 3. Cell Biology - DeRoberties, Blaze publishers & Distributors Pvt.Ltd., NewDelhi.
- 4. Fundamentals of Cytology Sharp, Mc Graw Hill Company.
- 5. Cytology Wilson & Marrison, reinform Publications.
- 6. Cell and Molecular biology concepts and experiments- Gerald Karp; 4 the Edition.

ALLIED - I - BIOCHEMISTRY - I - M16UBCA01

UNIT-I

Carbohydrates - Introduction, classification, monosaccharide-structure, stereoisomers and structural isomers, mutarotation, and chemical reactions. Oligosaccharides-Dissaccharides-structure and importance of sucrose, Lactose, maltose, .Polysaccharides-structure and importance of homopolysaccharides and heteropolysaccharides.

UNIT-II

Amino acids - Classification, Essential & Non-essential amino acids, structure and properties. Protein: Definition, classification and functions – structural levels of organization **UNIT-III**

Enzymes – Definition, classification with example, active site, lock and key model, induced fit hypothesis. Enzyme units – kinetics- factors affecting enzyme activity,

UNIT-IV

Lipids - Classification, physical & Chemical properties, saturated and unsaturated fatty acids , Structure of cell membrane & transport.

UNIT-V

Vitamins - Classification, occurrence, deficiency symptoms, biochemical functions of fat soluble and water soluble Vitamins.

- Lehninger's Principles of Biochemistry (2000) by Nelson, David I. and Cox, M.M. Macmillan/worth, NY
- 2. Fundamentals Of Biochemistry (1999) by Donald Voet, Judith G.Voet and Charlotte W Pratt, John Wiley & Sons, NY
- 3. Biochemistry 3rd (1994) by Lubert stryer, W H freeman and co, Sanfrancisco.
- 4. Biochemistry 4th edition (1988) by Zubay G L, W M C Brown Publishers.
- 5. Principles of Biochemistry (1994) Garrette & Grisham, Saunders college publishing.
- 6. Outlines of Biochemistry (1987) by Eric E.Conn, P.K. Stumpf, G.Brueins and Ray H.Doi, John Wiley & Sons, NY
- 7. Text book of biochemistry (1997) 4th edition Thomas M devlin, A John Wiley, Inc publication, New york.

SEMESTER - II

Part	Paper Code	Title of the Paper	Credits	Lecture Hrs/Wk	Int. Marks	Ext. Marks
Part -I	M16UFTA02	Tamil –II	3	5	25	75
Part –II	M16UFEN02	English –II	3	5	25	75
Part –III Core -II	M16UBT02	Major –Plant Biology	5	5	25	75
Part –III Allied –II	M16UBCA02	Allied -Biochemistry –II	4	5	25	75
Part –IV SBEC –I	M16UBTS01	Computer applications in Biology	2	2	25	<mark>75</mark>
Value Education	M16UES01	Environmental Studies	2	2	25	75
Part –III Core Practical-I	M16UBTP01	Lab in Cell biology and Plant biology	3	3	40	60
Part –III Allied Practical–I	M16UBCAP01	Lab in Biochemistry	3	3	40	60
			25			

PLANT BIOLOGY - M16UBT02

UNIT I

Classifications: Artificial - Natural – Phylogenetic. Biosystematics: Two Kingdom and Five Kingdom System of classification. General outlines of Bentham and Hooker's classification- Study of the range, character and economic importance of following families: Anonaceae, Fabaceae, Apocynaceae, Euphorbiaceae and Musaceae.

UNIT II

Structure and modifications of Root, Stem and Leaf, Phyllotaxy - Structure and types of Inflorescences - Structure and types of flowers, fruits and seeds

UNIT III

Tissue and tissue systems – Meristem: types of meristem- Shoot and root apical meristem - anatomy of monocot and dicot roots – anatomy of monocot and dicot stems - anatomy of monocot and dicot leaves.

UNIT IV

Absorption of Water and movement - Diffusion, Osmosis, Plasmolysis, Mechanism of Stomatal opening and closing. Photosynthesis – significance–electron transport system – cyclic and non-cyclic photophosphorylation – C3 and C4 pathways. Respiration – mechanism of glycolysis – Krebs cycle – pentose phosphate pathway.

UNIT V

Modes of Reproduction in Angiosperms - Vegetative propagation - Micropropagation - Sexual Reproduction: Structure of mature anther, Structure of mature Ovule and its types Pollination: types - Double fertilization - Development of male and female gametophytes - Development of Dicot Embryo.

- Pandey, S.N. 1991 Plant Physiology, Tata McGraw Hill Publishers (P) Ltd., New Delhi.
- 2. Verma, V., 1991-A Text Book of Plant Physiology, Emkay Publications, NewDelhi.
- 3. Sivarajan, V.V (1993) Introduction to Principles of Plant Taxonomy, Oxford & IBH Publishing Co., New Delhi.
- 4. Sen, S. (1992) Economic Botany, New Central Book Agency, Calcutta.
- 5. Earnes, A.J. 1936. Morphology of Lower Vascular Plants. Tata McGraw Hill Publishing Co., New Delhi
- 6. Esau, K. 1960. Plant Anatomy, Wiley Eastern Private Limited. New Delhi.

ALLIED - II-BIOCHEMISTRY - II - M16UBCA02

UNIT I

Concept of acids and bases. Buffers -Definition and determination of pH, Henderson Hasselbach Equation. Bioenergetics- Laws of Thermodynamics, Redox potential, Respiratory chain, Oxidative phosphorylation (Theories and Mechanism).

UNIT II

Carbohydrate metabolism -Glycolysis, Pyruvate Oxidation and Citric acid cycle HMP shunt, Gluconeogenesis, Glycogenesis, Glycogenolysis.

UNIT III

Protein metabolism -Transamination, oxidative and non-oxidative deamination, decarboxylation - urea cycle.

UNIT IV

Lipid metabolism- Biosynthesis of fatty acids and Oxidation of fatty acids (alpha,beta and omega oxidation). Cholesterol Biosynthesis.

UNIT V

Hormones – Definition, Classification of Hormones, Pituitary Hormones (TSH, ACTH, FSH, LH, GH) and Hypothalamic Hormones (TRF, CRF, GnRH, GHRH). Biological function and disorders of Hormones - Insulin, thyroxine, adrenaline and nor-adrenaline.

- 1. Fundamentals of Biochemistry, J.L. Jain, S.Chand publications, 2004.
- Harper's Biochemistry Robert K. Murray, Daryl K. Granner, Peter A. Mayes, Victor W. Rodwell, 24th edition, Prentice Hall International. Inc.
- 3. Fundamentals of Biochemistry (1999) by Donald Voet, Judith G.Voet and Charlotte W Pratt, John Wiley & Sons, NY.
- 4. Biochemistry 3rd (1994) by lubert stryer, W H freeman and co, Sanfrancisco.
- 5. Text book of biochemistry (1997) 4th edition Thomas M devlin, A John Wiley, In.
- 6. Principles of Biochemistry (1994) Garrette & Grisham, Saunders college.
- 7. Essentials of Biochemistry Sathyanarayanan.U. Books and allied (p) Ltd, 2002 publishing

SBEC - I- COMPUTER APPLICATIONS IN BIOLOGY - M16UBTS01

UNIT I

Introduction to computer: introduction, types of computer; characteristic to computer, generations of computer, classification of computer, programming languages, machine languages, assembly languages, high level languages, input device s, keyboard, mouse, types containing output devices, documentary printer, inject printer, lasser printer, LCD and LED storage devices, ROM, RAM, hard disk. CD, DVD, Primary memory.

UNIT II

Overview Of C- History of C-importance of C, basic structure of C program, contents, variables and data types, character set, Keyboard and identifiers, constants, variables, declaration of storage class, operators and expressions: evaluation of expressions- types of conversion in expressions, operators, -associative mathematical functions- managing input and output operations: reading and writing a character- formatted input and output.

UNIT-III

Decision making and branching: simple IF-IFELSE, Nesting statements, GO TO statement, Decision making and looping; WHILE statements, DO statements, FOR statement –junks in loops. Array: definition and declarations0 types: one, two, multi and dynamic array.

UNIT VI

Character array and string; introduction, declaring strings, OOPS, user defined function- definition of function, written values and their types, function class, Function declaration, all caterogry of functions, nesting of function. Structure and union, introduction accessing structure members, structure initialization, array of structure, array within structure unions.

UNIT-V

Scope and applications of Bioinformatics, Internet basic, biological data base and analysis, Applications of sequence analysis.

- 1. Fundamentals of computer science and communications engineering by Alex Lean and Mathew Lean
- 2. Programming in ANSCI C by E.Balagurusamy.
- 3. Introduction to Bioinformatics by S.Ignacimuthu.

ENVIRONMENTAL STUDIES -M16UES01

UNIT I

Environment – definition – scope – structure and function of ecosystems- producers, consumers and decomposers- energy flow in the ecosystem - ecological succession – food chain, food webs and ecological pyramids – concept of sustainable development.

UNIT II

Natural resources: renewable - air, water, soil, land and wildlife resources. Non - renewable - mineral coal ,oil and gas. Environmental problems related to the extraction and use of natural resources.

UNIT III

Biodiversity – definition – values – consumption use, productive social, ethical, aesthetic and option values threats to bio diversity – hotspots of bio diversity – conservation of bio - diversity: in – situ ex – situ. Bio – wealth - national and global level .

UNIT IV

Environmental Pollution: definition – causes, effects and mitigation measures – air pollution, water pollution, soil pollution noise pollution, thermal pollution – nuclear hazards – solid wastes, acid rain – climate change and global warming environmental laws and regulations in india.

UNIT V

Social Issues and the Environment - urban problems related to energy. water conservation, rain water harvesting, watershed management, wasteland reclamation, Environment Protection Act- Air (Prevention and Control of Pollution) Act. Water (Prevention and Control of Pollution) Act, wildlife Protection Act, forest Conservation Act.

- 1. Agarwal, K.C. 2001 Environmental Biology, Nidi Publ. Ltd. Bikaner.
- 2. Bharucha Erach, The Biodiversity of India, Mapin Publishing Pvt. Ltd., Ahmedabad 380013, India, Email: mapin@icenet. net (R).
- 3. Environmental Studies For Undergraduate Courses Erach Bharucha
- 4. Down to Earth, Centre for Science and Environment (R).
- 5. Environmental studies by Anilkumar .D.E. Newvage International.
- 6. Environmental Biology by Phatia.A.L. Ramesh Publisher.
- 7. Environmental Problems and solution by Arthana.D.K. Vanathy Publisher. Environment its important and the imperative by Sivam varatharajan. Pratheeba publication.

PRACTICAL - I - LAB IN CELL BIOLOGY AND PLANT BIOLOGY - M16UBTP01

CELL BIOLOGY

- 1. Microscopes and its parts
- 2. Micrometry Stage and Ocular Micrometer.
- 3. Cell Counting Haemocytometer
- 4. Mounting buccal epithelium and observing living cells using vital staining.
- 5. Mitosis in Onion root tip squash
- 6. Meiosis in grasshopper testis squash
- 7. Chironomous Salivary gland Chromosome squash preparation
- 8. Staining of macro molecules- Carbohydrates and Lipids..
- 9. Observation o slides (Cardiac muscle, Sperm cell, Muscle cell).
- 10. Staining of Mitochondria in Yeast using Janus green.
- 11. Microtomy (Demo)

PLANT BIOLOGY

- Description of plant family Anonaceae, Fabaceae, Apocynaceae, Euphorbiaceae & Musaceae
- 2. Observation of plant Morphology
- 3. Primary T.S of Monocot and Dicot stem, root, leaf
- 4. Osmosis, Plasmolysis and Photosynthesis by O₂ evolution
- 5. Dissection of embryo.

ALLIED PRACTICAL - I - LAB IN BIOCHEMISTRY - M16UBCAP01

- 1. Qualitative analysis of carbohydrates
- 2. Qualitative analysis of amino acids
- 3. Preparation and estimation of starch from potato
- 4. Preparation of casein from milk
- 5. Separation of sugar by paper chromatography
- 6. Separation of amino acid by paper chromatography
- 7. Separation of lipid by thin layer chromatography
- 8. Estimation of amino acid by formal titration method
- 9. Estimation of ascorbic acid by 2,6 Dichloro phenol Indophenol method
- 10. Estimation of reducing sugar by DNS method
- 11. Estimation of protein by Biuret method
- 12. Estimation of cholesterol by Zak's method

SEMESTER - III

Part	Paper Code	Title of the Paper	Credits	Lecture Hrs/Wk	Int. Marks	Ext. Marks
Part –I	M16UFTA03	Tamil –III	3	5	25	75
Part –II	M16UFEN03	English –III	3	5	25	75
Part –III Core –III	M16UBT03	Major -Animal Biology	5	5	25	75
Part –III Allied –III	M16UMBA01	Allied – Basic Microbiology	4	5	25	75
Part –IV SBEC-II	M16UBTS02	Applied Microbiology II and Bioinstrumentation	2	2	25	75
Part –IV NMEC		NMEC	2	2	25	<mark>75</mark>
Part –III Core Practical-II	M16UBTP02	Lab in Animal biology, Genetics and Molecular biology	-	3	-	1
Part –III Allied Practical–II	M16UMBAP01	Lab in Microbiology	-	3	-	
			19			

ANIMAL BIOLOGY - M16UBT03

UNIT I

Classification: concept of species; binomial nomenclature; Salient features, classification and detailed study of non-chordates and chordates up to class level.

UNIT II

Animal tissue - epithelium (covering), connective (support), muscle (movement), nervous (control).

UNIT III

Anatomy and physiology of different systems - digestive, circulatory, respiratory, endocrine and excretory system of human beings.

UNIT IV

Modes of reproduction-Asexual and sexual reproduction; Modes-Binary fission, sporulation, budding, gemmule, fragmentation. Gametogenesis-spermatogenesis & oogenesis; Menstrual cycle; Fertilization, Post–fertilization changes.

UNIT V

Concept of biodiversity; patterns of biodiversity; importance of biodiversity; loss of biodiversity; biodiversity conservation; hotspots, endangered organisms, extinction, biosphere reserves, national parks and sanctuaries.

- 1. Kotpal R.L (2003) Modern text book of Zoology- Rostogi Publications, Meerut.
- 2. Agarwal V.K (2000) Invertebrate Zoology- S.Chand Company.
- 3. Ekambaranatha Iyer (1993) Manual of Zoology Vol.II, Viswanathan (printers& publishers) Chennai.
- 4. Jordon, E.L & Verma, P.S. (2000) Chordate Zoology, S.Chand & Co, New Delhi
- 5. Hoar, W.S (1987) General and Comparative physiology, prentice Hall.
- 6. R.C.Dubey (1998). A Text book of Biotechnology, S.Chand& co Ltd New Delhi.

ALLIED- BASIC MICROBIOLOGY - M16UMBA01

UNIT - I

Development of microbiology as a discipline. Spontaneous generation *vs.* biogenesis. Development of various microbiological techniques. Concept of fermentation. Establishment of fields of medical microbiology, immunology and environmental microbiology with special reference to the work of following scientists: Anton von Leeuwenhoek, Joseph Lister, Paul Ehrlich, Edward Jenner, Louis Pasteur, Robert Koch, Beijerinck, Sergei N. Winogradsky, Alexander Fleming, Selman A. Waksman, Elie Metchnikoff.

UNIT - II

Classification of Microbes - Systems of classification, Numerical taxonomy, Systematic classification of bacteria - Bergey's Manual of Systematic Bacteriology (up to section level), Classification of bacteria on the basis of Nutritional types, Oxygen requirement. General characteristics of Archaebacteria, Rickettsias, Mycoplasmas, Cyanobacteria and Actinomycetes.

UNIT - III

History of phycology with emphasis on contributions of Indian scientists. General characteristics of algae including occurrence, thallus organization, algae cell ultra-structure, pigments, flagella, eyespot, food reserves and vegetative, asexual and sexual reproduction. Different types of life cycles in algae: Haplobiontic, Haplontic, Diplontic, Diplobiontic and Diplohaplontic life cycles. Detailed life cycle of *Chlamydomonas* and *Spirogyra*.

UNIT - IV

Historical developments in the field of Mycology including significant contributions of eminent mycologists. General characteristics of fungi including habitat, distribution, nutritional requirements. Fungal cell ultra-structure, thallus organization and aggregation. Fungal wall structure and synthesis. Sexual and asexual reproduction. Heterokaryosis, heterothallism and parasexual mechanism. Detailed life cycle of *Aspergillus* and *Rhizopus*.

UNIT - V

Protozoa: General characteristics with special reference to *Amoeba*, *Paramecium* and *Giardia* Viruses, viroids and prions: A general introduction with special reference to the structure of the following: TMV, poliovirus, T4 and λ phage, lytic and lysogenic cycles, one step multiplication curve.

- 1. Tortora, G.J., Funke, B.R. and Case, C.L. **2012.** Microbiology An Introduction. 11th *Edition*. Pearson Education.
- 2. Stainer, Ingharam, Wheelis and Painter. 1987. General Microbiology. 5th Edition. Macmillan Education, London.
- 3. A.J. Salle. 1974. Fundamental Principles of Bacteriology. Tata McGraw Hill Edition.
- 4. AH Rose. 1977. Chemical Microbiology An introduction to microbial physiology. Butterworth, London.
- 5. S. Meenakumari. 2006. Microbial Physiology. MJP Publishers.
- 6. MT Madigan, JM Martinko and Jack Parker. Brock Biology of Microorganisms. 10th Edition. Pearson and Education Inc., New Jersey.
- 7. David Freifelder, David M. Freifelder and John E. Cronan. 1994. Microbial genetics. 2nd Edition. Jones & Bartlett Publishers.
- 8. R.W. Old and S.B. Primrose. 1985. Principles of gene manipulation. Blackwell Scientific Publications.
- 9. Benjamin Lewin. 2006. Genes IX. 9th Edition. Jones and Bartlett publishers.
- 10. R.A. Atlas. 1998. Microbiology, Fundamental and Applications. 2nd Edition. McMillan Publishers.
- 11. Powar and Daginawala. 2010. General Microbiology. Volume I. Himalaya Publishing House.
- 12. Prescott, Harley, Klein. 2003. Microbiology. 5th Edition. McGraw Hill Publ.
- 13. Bernard R. Glick & Jack J. Pasternak. 2002. Molecular Biotechnology. Indian edition. Panima Publishing Corporation.
- 14. Pelzer, Chan and Kreig. 1986. Microbiology. 5th Edition. McGraw-Hill.

BIOPHYSICS AND BIO-INSTRUMENTATION - M16UBTS02

UNIT-I

Nature of chemical bond, Bonds in biological system. Laws of thermodynamics and concept of free energy, Biophysics of Water, Mole concept, Molarity & Normality

UNIT - II

Microscopes- Principles, applications and types. Spectroscopy – Beer-Lamberts law, Colorimetry, UV-Visible spectrophotometer (Single beam and double beam), IR spectrophotometer, Atomic Absorption spectrophotometer. Flame photometer.

UNIT -III

Centrifugation – Principle, preparation and analytical centrifugation, differential centrifugation, density gradient centrifugation – Rate zonal and Isopycnic. Chromatography – Principle, gas liquid chromatography, HPLC, Ion exchange chromatography, affinity chromatography and gel permeation chromatography.

UNIT - IV

Electrophoresis – Agarose gel electrophoresis, SDS-PAGE, 2D gel electrophoresis, X-ray crystallography, Auto radiography.

UNIT - V

Methods of Imaging – X-ray, CT Scan, ECG, EEG, Concept of Radioactivity, methods for measuring radioactivity – GM counter, Scintillation counter (Liquid and solid)

- 1. General Biophysics, vol. I & II H.V. Volkones.
- David Freifelder, David M. Freifelder and John E. Cronan. 1994. Microbial genetics.
 2nd Edition. Jones & Bartlett Publishers.
- 3. Bioseparations. B.Sivasankar. First edition. 2010. PHI Learning Pvt Ltd, New Delhi
- 4. Biophysical chemistry Upadhyay, Himalaya Publication, edition 3, 2005.
- 5. Biophysics S. Mahesh (2003), New Age International (P), Ltd.
- 6. Techniques and methods in Biology. K.L Ghatak. 2001. First edition. PHI Learning Private Limited, New Delhi.

NMEC- APPLIED STATISTICS - M16USTN01

UNIT I

Bio-statistics - definition - types of data - Diagrammatic and Graphical

Representation- Sources of data in life science - Uses of statistics.

UNIT II

Measures of Central Tendency - Mean, Median, Mode, - Merits and Demerits.

UNIT III

Measures of dispersion - Range, Standard deviation, Quartile deviation,

Merits and demerits, coefficient of variations

UNIT IV

Correlation - Types and methods of correlation, Rank - Correlation,

UNIT V

Regression, Simple regression equation, fitting, Prediction.

- 1. P.S.S. Sundar Rao, J. Richard (2012). An introduction to Biostatistics and
- 2. Reaserch methodology. Fifth Edition, Prentice Hall of India Learning Private Ltd, New Delhi. Price RS.275/-.
- 3. 2.Gurumani N (2005). An introduction to Biostatistics. 2nd Revised Edition,
- 4. MJP Publishers, Chennai. PriceRs.160/-.
- 5. Daniel WW, (1987). Biostatistics, John Wiley and Sons, New York.

NMEC - I - HEALTH AND HYGIENE

UNIT-I

Health-definitions of health, dimensions of health, concept to fwellbeing, determinants of health, and ecology of health.

UNIT-II

Body weight and composition for Health and Sports – Ideal body weight, values and limitations of the BMI, composition of the body; Diet during training, dietary supplements for athletes.

UNIT-III

Exercise and Health related fitness-Health related fitness, physical activity for health benefits, types of exercise, effective weight control- dieting or exercise; weight reduction program for young athletes.

UNIT-IV

Hygiene-Meaning and importance; Hygienic practices of employees, personal hygiene and contamination of food products, methods of disease transmission.

UNIT-V

Drug Abuse and health laws – Hygiene of eating and drinking, Ventilation and lighting, Health laws for food safety and hygiene, International control of health, WHO, Health destroying habits and addictions - Pan, Ganja, Drinking, Smoking, Tea and Coffee.

- 1. Marriott, G. Norman (1985). Principles of food sanitation. Van Nostrand Reinhold Company, New York.
- 2. K. Park (1997). Test book of preventive and social medicine. 15th edition, MIS Banarsidas Bhano Publishers, Jabalpur.
- 3. Melvin H. Williams (2005). Nutrition for Health, fitness and Sports. 7th edition, MC Graw Hill international Edition.
- 4. Michael J.GIbney, lan A Macdonald and Helen M.Roche (2008). Nutrition and MetabolismBlackwell Publishing company, Bangalore

NMEC - I - FOOD AND NUTRITION

UNIT-I

Concept of Nutrition - Health, nutritional status and malnutrition. Carbohydrates - Definition, composition, functions, maintenance of blood sugar levels, requirement, sources, digestion and absorption; Dietary fiber-Definition, classification, physiological effects and sources.

UNIT-II

Proteins - Definition, composition, nutritional classification of proteins and amino acids, functions, sources, requirements, digestion and absorption. Lipids - Definition, composition, functions, sources, requirements, digestion and absorption. Essential fatty acids - Definition, functions, sources and effects of deficiency.

UNIT-III

Energy - Definition, units of measurement, direct and indirect calorimetry; Determination of energy value of food, Total Energy requirement, Factors affecting physical activity, Factors affecting Basal Metabolic Rate.

UNIT-IV

Nutritional elements: Functions, sources, requirements and effects of deficiency- Calcium, Phosphorous, Iron, Iodine, Copper, Fluorine, Zinc, Sodium and Potassium.

UNIT-V

Fat soluble Vitamins –Vitamin A, D, E and K: Functions, requirements, sources and effects of deficiency. Water soluble Vitamins – Thiamine, riboflavin, niacin, ascorbic acid, folic acid, vitamin B6 and vitamin B12: Functions, requirements, sources and effects of deficiency.

- 1. Sumathi R. Mudambi, Rajagopal, M.V (1997). Fundamentals of Foods and Nutrition (3rd edition), New Age International (P) Ltd, Publishers.
- 2. Srilakshmi,B. (2016). Nutrition Science (5thedition), New Age International (P)Ltd, Publishers.
- 3. Mangala Kango (2005). Normal Nutrition, Curing diseases through diet (1stedition), CBS Publications.
- 4. Mahtab.S.Bamji, Kamala Krishnaswamy and G.N.V. Brahmam. (2009). Text Book of Human Nutrition Oxford and IBH Publishing Company.

SEMESTER - IV

Part	Paper Code	Title of the Paper	Credits	Lecture Hrs/Wk	Int. Marks	Ext. Marks
Part –I	M16UFTA04	Tamil –IV	3	5	25	75
Part –II	M16UFEN04	English –IV	3	5	25	75
Part –III Core -IV	M16UBT04	Major –Genetics and Molecular Biology	5	5	25	75
Part –III Allied –IV	M16UMBA02	Allied – Applied Microbiology	4	<mark>5</mark>	25	<mark>75</mark>
Part –IV SBEC -III	M16UBTS03	Bioinformatics	2	2	25	75
Part –IV NMEC		NMEC	2	2	25	75
Part –III Core Practical-II	M16UBTP02	Lab in Animal biology, Genetics and Molecular biology	3	3	40	60
Part –III Allied Practical–II	M16UMBAP01	Lab in Microbiology	3	3	40	60
			25			

GENETICS AND MOLECULAR BIOLOGY - M16UBT04

UNIT I

Mendelian laws of inheritance, Back cross and Test cross. Non-Mendelian inheritance; Chromosomal theory of inheritance. Cytoplasmic inheritance- Snail coiling, keppa particl in paramecium; Haemophilia, Color blindness.

UNIT II

Chromosome aberrations – Numeral and Structural aberrations. Albinism, Sickle Cell Anemia, Phenyl Ketonuria. Genome organization in Bacteria, Plant and Animal.

UNIT III

Structure, types and forms & functions of DNA and RNA. Central dogma of molecular Biology- DNA replication in prokaryotic and eukaryotic, DNA Repair, DNA recombination. Regulation of gene expression-lac and trp operons.

UNIT IV

Microbial genetics and Mutations: Conjugation, Transduction, Transformation. Mutations – Spontaneous and induced- chemical and Physical mutagens. Analysis of mutations in biochemical pathways, one gene – one enzyme hypothesis. One gene one polypeptide hypothesis.

UNIT V

Molecular biology of N2 fixation, nif gene rearrangement and N2 fixation in cyanophytes, nif gene transfer in Chloroplast. Agrobacterium and crown gall tumor formation. Molecular marker techniques - RFLP, RAPD, AFLP.

- 1. Plant biochemistry and Molecular biology,Lea,P.J & Leegood;1993 John Wiley & sons.
- 2. Molecular genetics of Photosynthesis, Anderson, B Salter, H, 1996., IRL press, Oxford.
- 3. Cell and Molecular Biology Robertis *et al*. Waverly publication, edition 8, 1995.
- 4. Genetics Strickberger, M.W.Printice hall, edition 4,1997.
- 5. Molecular Biology of the Cell Alberts. Garland publication, edition 4, 2002.
- 6. Text Book of Cell and Molecular Biology Ajay Paul. Books and Allied (P) Ltd, 2 edi. 2007.
- 7. Principles of Genetics E.J.Gardener, M.J.Simmons and D.P.Snustad, John Wiley & Sons Publications.

ALLIED- APPLIED MICROBIOLOGY II - M16UMBA02

UNIT-I

Sterilization- Physical and chemical. Growth of bacteria – multiplication – growth curve – Determination of growth. Culture techniques – Pure culture, anaerobic culture – preservation of cultures. Collection and transport of clinical specimens for microbiological examinations. Antimicrobial chemotherapy – Antibiotics – mode of actions

UNIT-II

Morphology, culture, biochemical, pathogenicity, laboratory diagnosis and prevention of bacterial diseases - *Staphylococcus aureus*, *Streptococcus pyogens*, *Mycobacterium tuberculosis*, *Corynebacterium diphtheriae*, *Clostridium tetani*, *Bacillus anthracis*, *Salmonella typhi*, *Vibrio cholerae*, *Escherichia coli*, *Pseudomonas aeruginosa*.

UNIT -III

Virology: Pox viruses – Variola, Vaccinia. Herpes viruses — Hepatitis Viruses. Picorna Viruses - Polio. Orthomyxo Virus – Influenza. Retro Virus – HIV. Parasitology:, Malaria parasite - Plasmodium species. Mycology: Morphological features of fungi - isolation, identification and diagnosis of fungi from clinical specimens. Superficial mycosis-Taenia nigra - Cutaneous mycosis Dermatophytosis. Subcutaneous mycosis- Sporotrichosi,. Systemic mycosis – Histoplasmosis. Opportunistic mycosis - Candidiasis, - Aspergillosis. Antifungal agents – Sensitivity tests - Mycotoxins.

UNIT -IV

Microorganisms of environment (soil, water and air). Microbial interactions — mutualism, commensalism, antagonism, competition, parasitism, predation. Microbiology of air. Microbes in air. Methods of purification of air. Air borne diseases.

UNIT -V

Microbiology of water – Potability of water quality – Indicator organisms – water purification – waterborne diseases and their control measures. Microbiology of sewage – chemical and biochemical characteristics of sewage – BOD & COD – Sewage treatment – Physical, chemical and biological (trickling filter, activated sludge and oxidation pond) treatment.

- AH Rose. 1976. Chemical Microbiology An introduction to microbial physiology Butterworth, London.
- 2. MT Madigan, JM Martinko & Jack Parker. 2002. Brock Biology of Microorganisms 10^{th} Edition Pearson and Education Inc., New Jersey.
- 3. Prescott, Harley, Klein. 2003. Microbiology. 5th Edition. McGraw Hill Publ.
- 4. Bernard R. Glick & Jack J. Pasternak. 2002. Molecular Biotechnology. Indian edition. Panima Publishing Corporation.
- 5. Pelzer, Chan and Kreig. 1986. Microbiology. 5th Edition. McGraw-Hill.
- 6. S. Meenakumari. 2009. Microbial Physiology. MJP Publishers.

BIOINFORMATICS - M16UBTS03

UNIT-I

Important contributions - sequencing development - aims and tasks of Bioinformatics - applications of Bioinformatics - challenges and opportunities - Computers and programs – internet - world wide web – browsers - EMB net – NCBI.

UNIT-II

Importance of databases - nucleic acid sequence databases - protein sequence databases - structure databases - bibliographic databases and virtual library - specialized analysis packages

UNIT-III

Sequence analysis of biological data- models for sequence analysis and their biological motivation- methods of alignment - methods for optimal alignments; using gap penalties and scoring matrices- multiple sequence alignment – introduction - tools for MSA - application of multiple sequence alignment.

UNIT-IV

Gene predictions strategies - protein prediction strategies - molecular visualization-Homology - phylogeny and evolutionary trees - Homology and similarity - phylogeny and relationships.

UNIT-V

Discovering a drug - target identification and validation - identifying the lead compound - optimization of lead compound - chemical libraries.

- 1. T K Attwood, D J parry-Smith, Introduction to Bioinformatics, Pearson Education, 1st Edition, 11th Reprint 2005.
- 2. C S V Murthy, Bioinformatics, Himalaya Publishing House, 1st Edition 2003.
- Stephen A. Krawetz, David D. Womble, Introduction To Bioinformatics A
 Theoretical and Practical Approach, Humana Press, 2003.
- 4. Hooman H. Rashidi, Lukas K. Buehler, Bioinformatics Basics-Applications in Biological Science and Medicine, CRC press, 2005.
- 5. S.C. Rastogi & others, Bioinformatics- Concepts, Skills, and Applications, CBS Publishing, 2003.
- 6. S. Ignacimuthu, S.J., Basic Bioinformatics, Narosa Publishing House, 1995.

LAB IN ANIMAL BIOLOGY, GENETICS AND MOLECULAR BIOLOGY - M16UBTP02

Animal Biology

- 1. Cockroach Digestive system and Reproductive systems.
- 2. Mounting of chick embryo blastoderm
- 3. Mounting of Mouth parts of Cockroach.
- 4. Mounting of Mouth parts of Cockroach.
- 5. Analysis of excretory product during chick development.
- 6. Collection and handling of Blood specimen
- 7. Collection and handling of Urine specimen
- 8. Qualitative analysis of Urine sample
- 9. Detemine haemoglobin concentration
- 10. Estimation of sugar in Urine
- 11. Estimation of sugar in Blood
- 12. Observation of Amoeba, paramecium, Plasmodium, Tapeworm Scoelex, Earth worm, Starfish,
- 13. Observation of Chick embryos (24, 33 & 48Hours).
- 14. Observation of Frog post-fertilization stages- 2, 4 &8 cell stages.
- 15. Observation of Transverse section of Ovum, overy, testis, kidney Pancreas, pituitary thymus and thyroid gland.

Genetics and Molecular Biology

- 1. Karyotype analysis: Man Normal and Abnormal Down and Turner's Syndromes.
- 2. Mendel's laws of genetics Mono and Dihybrid crosses.
- 3. Rearing morphology of drosophila (mutant eye identification)
- 4. Observation of Genetic model organisms (*Arabidopsis thaliana* and *Coenorrabditis elegans*)
- 5. Isolation and purification of plasmid DNA.
- 6. Observation of DNA Agarose gel electrophoresis.
- 7. Quantification of nucleic acids DNA & RNA Chemical and UV method.
- 8. Separation of protein by SDS PAGE and Staining
- 9. Bacterial mutagenesis physical & chemical.
- 10. Preparation of *E. coli* competent cells.
- 11. Transformation of bacteria CaCl₂ method.
- 12. Bacterial conjugation.
- 13. Transduction.

LAB IN MICROBIOLOGY - M16UMBAP01

- 1. Cleaning and Preparation of glassware
- 2. Preparation of Microbiological media
- 3. Sterilization glassware and media wet, dry and filtration
- 4. Isolation of microorganisms from various samples
- 5. Counting of microbes Use of haemocytometer, colony counting
- 6. Identification of microbes Microscopy & Macroscopy
- 7. Motility of Bacteria by Hanging drop method
- 8. Staining of bacteria Simple & differentia staining Gram, spore, capsule, flagella
- 9. Culture Techniques Pure culture slant, stab, streak etc.
- 10. Maintenance and storage of bacterial strains.
- 11. Staining of fungi
- 12. Identification of algae, fungi, lichens and yeast
- 13. Identification of protozoa and nematodes
- 14. Biochemical characterization of Bacteria Catalse test, oxidase test, Sugar fermentation, IMVIC, urease test, TSI test, Starch hydrolysis.
- 15. Cultural characteristics of microorganisms on Basal medium, Selective medium,
- 16. Differential medium, Enriched medium, Enrichment medium.
- 17. Growth Growth curve
- 18. Antibiotic sensitivity test by Kirby- Bauer disc diffusion method.
- 19. Determination of potability of water by MPN method.

NMEC-II -APPLIED BIOTECHNOLOGY - 16UBTN03

UNIT I

Genetic engineering of Herbicide resistant plants, Insect resistance, Viral resistance – Stress tolerant plants, flower pigmentation,- modification of nutritional content, Delayed fruit ripening, Artificial seeds, Terminator seed technology, Nif gene transfer. Intellectual Property Rights.

UNIT II

Transgenic animals (Cattle, Mice), super ovulation, Embryo transfer, IVF, Preservation Methods. Production of recombinant products – Growth hormones, Human interferons. Dairy Biotechnology, Seri technology. Stem cell therapy. Ethical issues of animal Biotechnology.

UNIT III

Fermentation – Types, Fermentor- Types, Strain improvement, Media formulation, Upstream & Down stream processing. Production of industrially important enzymes, antibiotics, organic acids, Vitamins & aminoacids.SCP. Role of GMOs in Biodegradation. Bioleaching

UNIT IV

Immunoglobulin genes – functions & phylogenetic analysis. Isolation, characterization, purification and production of lymphocytes. Role of Immuno Supperssors and Modulators. Molecular Immunodiagnostic methods. Specificity of T- cell receptors. Role of Biotechnology in Vaccine production. Monoclonal antibodies.

UNIT V

Nanoparticles- Metals. Biological networks. Bionano Particles- nanostarch, nanoparticulate, nanocomposites,nanobiosensors. Dentrimers as nanoparticulates. Nanotechnology in Molecular diagnosis. Nanotechnology in drug Discovery & Delivery. Applications of nanomaterials in medicine. Ethical considerations of Nanobiotechnology.

- J.Hammond, P.McGarvey and V.Yusibov 2000. Plant Biotechnology. Springer verlag.
- 2. Paul Christou and Harry Klee. (2004). Hand Book of Plant Biotechnology. Vol I& II. John Wiley & Sons. Ltd.

- 3. H.S.Chawla. 1998. Biotechnology in crop improvement. International Book Distributing Company.
- 4. Nigel Jenkins. Animal Cell Biotechnology: Methods and protocols. Humana Press.
- John,R.W.Masters. (2000). Animal Cell Culture- Practical approach. Third edn. Oxford University Press.
- 6. U.Satyanarayana. 2005. Biotechnology. Books and Allied (p) Ltd.
- 7. Peter F. Stanbury. Principles of Fermentation Technology. Butterworth-Heinemann, Elsevier Science Ltd.
- 8. Alexender. N. Glazer & Hiroshi Nikaido.W.H. (1995) Microbial Biotechnology. Freeman and Company.
- 9. Rajasekara Pandian M and Senthilkumar B (2007) Immunology and Immunotechnology. Panima Publishing Corporation, New Delhi.
- 10. Kuby J (1997) Immunology 3rd Edn .WH Freeman &Co. New York.

NMEC-II-AGRICULTURALBIOTECHNOLOGY- M16UBTN04

UNIT-I

Introduction to Agricultural biotechnology. Crop improvement hybridization and plant breeding techniques. Micropropagation and plant tissue culture technique and its application in agriculture. Somatic hybridization, haploid production and cryopreservation.

UNIT-II

Mechanism of biological nitrogen fixation process. Production of biofertilizers and applications of rhizobium, azotobacter, azolla and mycorrhiza. Use of plant growth regulators in agriculture and horticulture.

UNIT-III

Microbes based Biofertilizers: Azolla and Anabena, Rhizobium, Azotobacter, Azospirillum, Mycorrhiza. Biopesticide – Trichoderma, BT and NPV.

UNIT-IV

Biodiversity Legislation in India; Indian Biodiversity Act and provisions on crop genetic resources. Convention on Biological Diversity (CBD) and Cartagena protocol on Biosafety. Conservation strategies for seed gene bank; Impact of GE crops on Biodiversity.

UNIT-V

Transgenic plants in quality modifications—Starch, Oil, Protein, and Golden Rice. Current status of transgenics, Biosafety norms and controlled field trails and release of transgenic (GMO).

REFERENCES

- 1. Grant, W.D and Long P.E (1981). Environmental microbiology Springer
- 2. Stuart J. Smyth, Peter W.B. Phillips. (2014). Handbook on Agriculture, Biotechnology and development , David Castle Edward Elgar Publishing Inc.
- 3. Kumar, H.D. (2005). Agricultural Biotechnology, Daya Publishing house
- 4. Rajmohanjoshi (2006). Agricultural Biotechnology. Isha Books, Delhi.
- 5. AhindraNag . (2008). Text book of Agricultural Biotechnology PHI Learning Private Limited, New Delhi

SEMESTER - V

Part	Paper Code	Title of the Paper	Credits	Lecture Hrs/Wk	Int. Marks	Ext. Marks
Part –III Core –V	M16UBT05	Immunology	5	5	25	75
Part –III Core -VI	M16UBT06	rDNA Technology	5	5	25	75
Part –III Core -VII	M16UBT07	Bioprocess Technology	5	5	25	75
Elective I		Elective	4	5	25	75
Part –IV SBEC -V	M16UBTS04	Industrial Biotechnology and IPR	2	4	25	<mark>75</mark>
Part –III Core Practical-III	M16UBTP03	Lab in Immunology & rDNA Technology	3	3	40	60
Part –III Core Practical- IV	M16UBTP04	Lab in Bioprocess Technology	3	3	40	60
			27			

IMMUNOLOGY- M16UBT05

UNIT I

Historical perspectives and Scope of Immunology, Innate and Acquired immunity, Cells of the Immune system, Haematopoiesis, Organs of the Immune System: Primary and Secondary Lymphoid Organs.

UNIT II

Antigen – Characteristics of antigens, Classes , Factors that influence immunogenicity. Haptens, Mitogens, Adjuvants. Humoral Immune response – B cell activation and proliferation. Cell mediated Immune response – T cell receptors and its activation.

UNIT III

Immunoglobulins – Structure and functions. Antigen – Antibody reactions – Agglutination, precipitation, RIA, ELISA, FACS. Organization and expression of immunoglobulin genes.

UNIT IV

Cytokines: Types and function, Complement-, Classical, Alternative pathway. Major Histocompatability Complex, Hybridoma technology. Hypersensitivity and its types.

UNIT V

Transplantation immunology. Autoimmunity, Cancer immunology, Vaccines. Immunotherapeutics.Immuno tolerance, Immunity to infectious diseases-AIDS.

- 1. Kubey, J. 1993. Immunology Freeman and company.
- 2. Janeway, C.A., Immuno-biology Paul Travers 1994.
- 3. Seemi Farhat Basir., Text Book of Immunology by. First edition.
- 4. Madhavee Latha, P., A Text Book of Immunology, First Edition. S.Chand & Company Ltd, New Delhi.
- 5. Ajoy Paul.. Textbook of Immunology
- 6. Rajasekara pandian M and Senthil kumar B., 2007. Immunology and Immunotechnology. (2007), Panima publishing corporation, New Delhi.

rDNA TECHNOLOGY - M16UBT06

UNIT I

Introduction to genetic engineering and recombinant DNA technology. Various steps involved in rDNA technology. Enzymes of rDNA technology - Restriction endonucleases, exonuclease, DNA modifying enzymes - Polymerase, Transferase, alkaline phosphatase, polynucleotide kinase, and Ligase. cohesive and blunt end ligation, linkers, adaptors and homopolymeric tailing.

UNIT II

Vectors - Plasmids - pBR322, PUC19, Phage vectors, Cosmids, Phagemids, lambda phage virus vectors, Shuttle vectors and expression vectors and M13 mp vectors. Insertion and replacement vectors, Artificial chromosome vectors (YAC, BAC), animal virus derived vectors - SV40p, vaccinia/bacculo and retroviral vectors. Plant based vectors - Ti and Ri as vectors.

UNIT III

Construction of genomic libraries and cDNA Libraries. Recombinant selection and screening, DNA amplification - Principles, application and types of Polymerase chain reaction (PCR), RFLP and RAPD.

UNIT IV

Principles of DNA hybridization. Southern, Northern and Western blotting techniques. DNA Sequencing methods, Site directed mutagenesis, Chromosome jumping, DNA Microarray, Method of gene transfer - agrobacterium mediated / chemical mediated and Biolistics.

UNIT V

Transgenic plants with reference to virus and pest resistances, herbicide tolerance and stress tolerance (cold, heat and salt); Transgenic animals – Pharmaceutical products - insulin. Farm animal production. Recombinant DNA technology in the production of vaccines. Ethical issues and safety regulations in rDNA technology.

- 1. Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter. 2002. Molecular Biology of the Cell, 4th Edition. Garland Sciences.
- 2. Stanley Maloy 1994. Microbial genetics. 2nd Edition. Jones and Bartlett publisher.
- 3. Uldis N. Streips and Ronalad E. Yasbin. 2002. Modern Microbial Genetics. 2nd Edition. Wiley-Blackwell.

- 4. Sandy B. Primrose, Richard M. Twyman, Robert W. Old. 2008. Principles of Gene Manipulation. 6th Edition. Blackwell Science.
- 5. Brown TA. 2008. Genomes. 3rd Edition. New York: Garland Publishing Co. New York: Garland Science.
- 6. Old, R.W and S.B. Primrose. 1996. Principles of Gene Manipulation: An Introduction to Genetic Engineering. 2nd Edition. Blackwell Scientific Publications, Oxford.
- 7. Glover, DM. and BD. Hames. 1995. DNA Cloning: A Practical Approach. 2nd Edition. IRL Press, Oxford.
- 8. Watson J.D., Gilman M., Witkowski, J. and Zoller M. 1992. Recombinant DNA. 2nd Edition. Scientific American Books, New York.
- 9. Daniel L. Hartl. 2011. Analysis of Genes and Genomes. 8th edition. Maryellen Ruvolo. Laxmi Publications.
- 10. Keya Chaudhuri. 2012. Recombinant DNA Technology. The Energy and Resources Institute, TERI.

BIOPROCESS TECHNOLOGY - M16UBT07

UNIT I

Introduction to bioprocess, isolation and screening of industrially important microbes. Primary & Secondary detection & assay of fermentation products. Improvement of the strains for increased yield and other desirable characteristics.

UNIT II

Advantages of bioprocess over chemical process. Fermentations – submerged and solid state. Types of fermentor- CSTR, Tower, jet loop, Air left, bubble column, packed bed. Immobilization- Immobilized cells. Enzyme co-immobilization. Bioreactor design, parts and their functions.

UNIT III

Media formulation, sterilization- Batch and continues sterilization systems, Sterilization of air- Fibrous filters. Measurement and control of bioprocess parameters- pH, Temperature, Dissolved oxygen. Antifoam agents. Aeration and agitation.

UNIT IV

Rate of oxygen transfer. Determination of oxygen transfer coefficients. Biological properties of medium. Biological heat transfer. Heat transfer coefficients. Scale up and scale down process.

UNIT V

Downstream processing: Precipitation, filtration, flocculation and centrifugation. Cell disruption methods - physical and chemical. Chromatography and separation, drying and crystallization.

- 1. Shuler ML and Kargi F., Bioprocess Engineering: Basic concepts, Prentice Hall, Engelwood Cliffs, 2002.
- 2. Kalaichelvan and Arulpandi, Bioprocess Technology. MJP. Publishers 2008.
- 3. Doran. Bioprocess Engineering Principle. Elsevier. 2007.
- 4. Stanbury, RF and Whitaker A., Principles of Fermentation Technology, Pergamon press, Oxford, 1997.
- 5. Comprehensive Biotechnology. The Principles, Applications and Regulations of Biotechnology in Industry, Agriculture and Medicine, Vol 1, 2, 3 and 4 (2004). Edited by M. M. Young, Reed Elsevier India Private Ltd, India

ELECTIVE- BIOETHICS & BIO-SAFETY - M16UBTE01

UNIT-I

Introduction to ethics/bioethics – Framework for ethical decision making; biotechnology and ethics – biotechnology in agriculture and environment: benefits and risks –benefits and risks of genetic engineering.

UNIT-II

Ethical issues against the molecular technologie. Basics of bioethics principles, international codes and guidelines in India - Ethics in post-genomic era Ethical aspects of genetic testing – ethical aspects relating to use of genetic information – genetic engineering and biowarfare.

UNIT III

Introduction to Biosafety, Biosafety issues in biotechnology-historical background; Introduction to Biological Safety Cabinets; Primary Containment for Biohazards; Biosafety Levels; Biosafety Levels of Specific Microorganisms; Recommended Biosafety Levels for Infectious Agents and Infected Animals.

UNIT IV

Biosafety guidelines and regulations (National and International) – Operation of biosafety Guidelines and regulations of Government of India; Definition of GMOs & LMOs; Benefits of Biotechnology, ELSI of Biotechnology, Recombinant products for human healthcare.

UNIT V

Recombinant foods & religious beliefs, GM foods, Release of genetically engineered organisms. Roles of Institutional Biosafety Committee, RCGM, GEAC etc. Biosafety issues in Biotechnology. Overview of National Regulations and International Agreements.

- Sateesh, M.K., 2008. Bioethics and Biosafety, I.K.International Pvt. Ltd, New Delhi, India.
- 2. Senthil Kumar Sadhasivam and Mohammed, Jaabir. 2008. IPR, Biosafety and Biotechnology Management. Jasen Publications, Tiruchirapalli, India.
- 3. Sree Krishna V (2007) Bioethics and Biosafety in Biotechnology, New age international publishers.

DEVELOPMENTAL BIOLOGY M19UBTE02

UNIT-I

Reproductive cycle in mammals, Spermatogenesis and Oogenesis in mammals, Types of eggs and Fertilization.

UNIT-II

Reproductive hormones, Sperm Banking, Artificial Insemination, In vitro Fertilization, Embryo Transfer and surrogacy.

UNIT-III

Types and patters of cleavage, Blastulation, Gastrulation, outline of fate maps and morphogenetic movements, Metamorphosis (Insects and amphibians) and its hormone control.

UNIT-IV

Plant embryogenesis- Development of Microsporangium and Megasporangium, Pollination, Embryo development and double fertilization in plants and seed formation.

UNIT-V

Genetic control of development- pattern determination, Bithorax complex, genes controlling the flower development and Drosophila development.

- 1. Jain, P.C. (2013). Elements of Developmental Biology. Vishal Publication, New Delhi.
- 2. Sastry, K. V. and Vinita Shukal (2012). Developmental Biology. Rastogi publications.
- 3. Verma, P.S., Agarwal, V.K., and Tyagi., (1995). Chordate embryology. S. Chand & Co., New Delhi.
- 4. A.K. (2016). Berry An Introduction to Embryology– M K publications New Delhi-51.
- 5. Gilbert, S. F.(2010). Developmental Biology, IX Edition, Sinauer Associates, Inc., Publishers, Sunderland, Massachusetts, USA .

NURSERY AND GARDENING M16UBTE03

UNIT-I

Nursery: definition, objectives and scope and building up of infra structure for nursery, planning and seasonal activities-Planting-direct seeding and transplants.

UNIT-II

Seed: Structure and types- Seed Dormancy; causes and methods of breaking dormancy –Seed storage: Seed banks, factors affecting seed viability, genetic erosion- Seed production technology-seed testing and certification.

UNIT-III

Vegetative propagation: air-layering, cutting, selection of cutting, collecting season, treatment of cutting, rooting medium and planting of cuttings-Hardening of plants-green house-mist chamber, shed root, shade house and glass house.

UNIT-IV

Gardening: definition, objectives and scope – different types of gardening- landscape and home gardening – parks and its components- plant materials and design – computer applications in land scaping- Gardening operations: soillaying, manuring, watering, management of pests and diseases and harvesting.

UNIT-V

Sowing/raising of seed sand seedlings – Transplanting of seedlings - Study of cultivation of different vegetables: cabbage, brinjal, lady's finger, onion, garlic, tomatoes, and carrots-Storage and marketing procedures.

- 1. Bose,T.K.& Mukherjee, D.(1972). Gardening in India Oxford & IBH Publishing Co., New Delhi.
- 2. Sandhu, M.K., (1989). Plant Propagation. While Eastern Ltd., Bangalore, Madras.
- 3. Kumar, N. (1997). Introduction to Horticulture. Raja Lakshmi Publications, Nagercoil.
- 4. Edmond Musser & Andres. (2005). Fundamentals of Horticulture McGraw Hill Book Co., New Delhi.
- 5. Agrawal, P.K (1993). Hand Book of Seed Technology National Seed CorporationLtd., New Delhi.

HERBAL TECHNOLOGY-M16UBTE04

UNIT-I

Herbal medicines: history and scope - definition of medical terms —role of medicinal plants in Siddha systems of medicine; cultivation — harvesting -processing- storage —marketing and utilization of medicinal plants.

UNIT-II

Pharmacognosy - systematic position -chemical constitution and medicinal uses of the following herbs in curing various ailments; Tulsi, Ginger, Fenugreek, Indian Gooseberry and Ashoka.

UNIT-III

Phytochemistry – active principles and methods of their testing - identification and utilization of the medicinal herbs; Catharanthus roseus (cardiotonic), Withania somnifera (drugs acting on nervous system), Clerodendron Phlomoides (anti-rheumatic) and Centella asiatica (memory booster).

UNIT-IV

Analytical pharmacognosy: Drug adulteration -types, methods of drug evaluation-Biological testing of herbal drugs - Phytochemical screening tests for secondary metabolites (alkaloids, flavonoids, steroids, triterpenoids, phenolic compounds, fatty acids, tannins, glycosides and volatile oils).

UNIT-V

Medicinal Plant Biotechnology: Genetics as applied to medicinal herbs- mutation- polyploidy. Plant tissue culture a source of bio-medicinals-Historical developments- types of cultures- phyto-pharmaceuticals in tissue cultures.

- Chopra, R.N., S.L.Nayar and I.C.Chopra (1956). Glossary of Indian medicinal plants. C.S.I.R, New Delhi
- 2. Kanny, Lall, Dey and Raj Bahadur (1984). The indigenous drugs of India. International Book Distributors.
- 3. Arber (1999). Herbal plants and Drugs. Agnes Mangal Deep Publications. New Delhi.

INDUSTRIAL BIOTECHNOLOGY AND IPR - M16UBTS04

UNIT I

Microbial production of Beer, wine, vinegar, and its commercial importance. Ketogenic fermentation process and mushroom fermentation. SCP production and its economic importance.

UNIT II

Microbial production of Butanol- Acetone, glycerol fermentation- History, versatility of the process, fermentation procedure and equipments, sterility and contaminations, future prospects for the butanol acetone fermentation.

UNIT III

Microbial processes, production and commercial important of Organic acids- Citric acid, Acetic acid. Microbial production of amino acids- Process control in amino acid fermentation, production of L-Glutamic acids, L-Lysine. commercial uses of amino acids.

UNIT IV

Microbial production of Antibiotics- Production, biosynthesis of Tetracycline, Aromatic amino acids -Chloramphenicol, novobiocin. Industrial production of Biopesticides and Biofertilizers.

UNIT V

Intellectual Property Rights (IPR)- different types of IPRs, studies on patents granted in India and other countries. IPR in genetically modified organisms; Regulating the use of biotechnology – rDNA technology – Food and Agricultural ingredients – patenting Biotechnology invention.

- 1. Wulf crueger and Anneliese crueger. 2003. Biotechnology- A text book of industrial microbiology. Panima publishing corporation. New Delhi.
- Jackson AT. 1991. Bioprocess Engineering in Biotechnology. Prentice Hall, Engelwood Cliffs.
- 3. Shuler ML and Kargi F. 2002. Bioprocess Engineering: Basic concepts, 2nd Edition. Prentice Hall, Engelwood Cliffs.
- 4. Peppler-Perlman. 2004. microbial technology(Microbial processes). Academic press, 2nd Edition.

- 5. Young M.M., Reed. 2004. Comprehensive Biotechnology: The Principles, Applications and Regulations of Biotechnology in Industry, Agriculture and Medicine. Vol 1, 2, 3 and 4. Elsevier India Private Ltd, India.
- 6. Mansi EMTEL, Bryle CFA. 2007. Fermentation Microbiology and Biotechnology. 2nd Edition. Taylor & Francis Ltd, UK.

LAB IN IMMUNOLOGY & rDNA TECHNOLOGY - M16UBTP03

- 1. Preparation of plasma and serum.
- 2. Blood cell analysis Using Haemocytometer
 - a. Total count of WBC,
 - b. Differential count of WBC.
- 3. Agglutination tests:
 - a. ABO Blood grouping.
 - b. WIDAL test.
 - c. ASO test.
 - d. Pregnancy test.
 - e. RPR test.
- 4. Precipitations:
 - a. Radial immunodiffusion.
 - b. Double immnodiffusion.
 - c. Counter Current immuno electrophoresis.
- 5. ELISA
- 6. Isolation and visualization of plasmid DNA.
- 7. Restriction Digestion of Lamda DNA.
- 8. Ligation of DNA Fragments.
- 9. Isolation of Antibiotic Resistant Mutants.
- 10. Bacterial Transformation.

LAB IN BIOPROCESS TECHNOLOGY - M16UBTP04

- 1. Isolation of Amylase producing organisms from soil.
- 2. Isolation of antibiotic producing microbes from soil.
- 3. Culture optimization (pH and Temperature).
- 4. Production of industrial enzyme by submerged fermentation- Amylase and Protease
- 5. Assay of Industrial important enzymes Amylase & Protease.
- 6. Microbial production of citric acid using Aspergillus niger.
- 7. Immobilization of cells & enzyme.
- 8. Wine production.
- 9. Alcohol production and estimation by chromic acid method.
- 10. Purification of Enzymes by Dialysis and Chromatography method-Demo.

SEMESTER - VI

Part	Paper Code	Title of the Paper	Credits	Lecture Hrs/Wk	Int. Marks	Ext. Marks
Part –III Core –VIII	M16UBT08	Plant & Animal Biotechnology	5	5	25	75
Part –III Core -IX	M16UBT09	Environmental Biotechnology	<mark>5</mark>	<mark>5</mark>	25	<mark>75</mark>
Elective II		Elective	4	5	25	75
Part –IV SBEC -VI	M16UBTS05	Nano-biotechnology	2	2	25	<mark>75</mark>
Part –III Core Practical-V	M16UBTP05	Lab in Plant & Animal Biotechnology	3	4	40	60
Part –III Core Practical- VI	M16UBTP06	Lab in Environmental Biotechnology	3	4	40	60
Project	M16UBTPR1	Project	5	5	40	60
Extension activities	M16UEX01	Extension activities	1	0	0	100
			28			

PLANT AND ANIMAL BIOTECHNOLOGY - M16UBT08

UNIT I

Historical events in plant tissue culture, Plant tissue culture, Callus induction, organogenesis, Meristem culture, anther, pollen, embryo culture and their application.

UNIT II

Protoplast technology - protoplast isolation, protoplast fusion and its application. Applications of plant tissue culture: - Elimination of pathogens, Germplasm conservation, somoclonal variation, embryo rescue, artificial seeds, Production of secondary metabolites, production of somatic hybrids.

UNIT III

Agrobacterium mediated gene transfer, Plant viral vectors. Resistance to herbicide, insecticide, virus and bacteria. Plant tissue culture techniques for crop improvement in dicots and monocots

UNIT - IV

Animal cell and Tissue culture: Culture media Primary culture, sub-culture and establishment of cell lines, types of cell lines, maintenance of cell lines, cloning of cell lines. Collection and Preservation of embryos.

UNIT - V

Molecular techniques in cell culture – In situ Molecular Hybridization, Somatic cell fusion, Production of Monoclonal antibodies. DNA transfer – Co precipitation with CaCl₂, Lipofection, Electroporation, Other methods. Transgenics: Transgenic animals – Production and application, Expression of the bovine growth hormone; transgenic in industry – vaccine production.

- 1. Culture of Animal cells, A manual of basic technique, R. Ian Freshney, John Wiley and Sons, 5th edition, 2005.
- 2. Animal Biotechnology M.M. Ranga, Agrobios Publications, 2nd edition, 2004.
- 3. An Introduction to plant tissue culture. M.K. Razdan, Oxford and IBH Publishing Company, New Delhi, 2000.
- 4. Plant Biotechnology: The Genetic Manipulation of Plants, Slater et al, Oxford University Press, Oxford, 3rd edition, 2003.
- 5. Plant Biotechnology Mantell S.H and Smith H, Cambridge University Press, UK, 1st edition, 1983.

ENVIRONMENTAL BIOTECHNOLOGY - M16UBT09

UNIT I

Renewable and Non-Renewable resources of energy. Conventional fuels and their environmental impact – Firewood, plant, Animal, Water, Coal and Gas. Modern fuels and their and their environmental impact – Methanogenic bacteria, Biogas, Microbial hydrogen production, Convert ion of sugar to alcohol Gasohol.

UNIT II

Bioremediation: Bioremediation of soil & water contaminated with oil spills, heavy metals and detergents. Degradation of lignin and cellulose using microbes.

UNIT III

Phytoremediation. Degradation of pesticides and other toxic chemicals by microorganisms. Degradation aromatic and chlorinates hydrocarbons and petroleum products.

UNIT IV

Treatment of municipal waste and Industrial waste and Industrial effluents. Biofertilizers Role of symbiotic and asymbiotic nitrogen fixing bacteria in the enrichment of soil. Algal and Fungal biofertilizers (VAM).

UNIT V

Bioleaching Enrichment of ores by microorganisms (gold, copper and uranium). Environmental significance of genetically modified microbes, plants and animals.

- 1. Environmental biotechnology (Industrial pollution management) S.N.Jogdand, 3rdedition, Himalaya publication, 2004.
- 2. Environmental biotechnology-S.K.Agarwal, TBH, 2nd Edition, 1999.
- 3. Waste water engineering treatment and reuse-Metcalf&Eddy, Franklin L.Burton, H.David Stensel, 4th edition, Tata McGraw Hill publication, 2005.
- 4. Ecology and Biotreatment by Ec Eldowney, S. Hardman D.J. and Waite S. 1993. Longman Scientific Technical.
- 5. Bioremediation by Baker K.H. and Herson. D. S, 1994, Mc Graw Hill Inc.,
- 6. Environmental Microbiology edited by Ralph Mitchell. A John Wiley and Sons. Inc.

ELECTIVE- FOOD BIOTECHNOLOGY - M16UBTE05

UNIT I

Microorganisms associated with food - bacteria, fungi & yeast. Enzymes in food preparation. Food contaminations. Food preservation & Food spoilage- types. Canned foods. UNIT II

Food borne diseases. Food colors (natural & artificial food colourants) – carotenoids, anthocyanins and melanin. Food flavoring agents.

UNIT III

Food engineering operations: Characteristics of food raw materials, preparative operations in food industry, cleaning of food raw materials, sorting of foods, grading of foods.

UNIT IV

Food quality: Sensory evaluation of food quality, quality factors for consumer safety, food safety standards. FSSA, HACCP and FDA. Processing plants- Cleaning and sanitation methods.

UNIT V

General principle, plant design – design, construction, functionality of building, design & fabrication of equipment. Plant layout Pest proofing/ fumigation methods. Water supply to food processing unit.

- 1. Food Processing & Preservation B.Siva PHI Learning Pvt Ltd 2011.
- 2. Fundamentals of Food Engineering D.G. Rao, PHI Learning Pvt Ltd 2010.
- 3. Food Microbiology Fundamentals & Frontiers Michael P. Doyle.
- 4. Food Microbiology Frazier. McGraw Hill Publications. Fourth edition.
- 5. Food Biotechnology Yiu Hui & G. Khachatourians.
- 6. Fundamentals of Food Microbiology Bibek, Laramie & Bhunia, CRC Press.

NANO BIOTECHNOLOGY - M16UBTS05

UNIT I

Nanobiology-concepts, definitions, prospects. Biological Nano objects –DNA, protein, lipids. Biological networks. Bionanoparticles– nanocomposites, nanoparticles.

UNIT II

Methods of Nanobiotechnology - TEM, SEM, AFM, Scanning Probe Electron Microcopy. Nanofabrication- Lithography. Characterization techniques – NMR, Mass (MALDI-TOF) spectroscopy, x-ray diffraction.

UNIT III

Biosensors – definition and classification – Types: Potential, Electrochemical and Biomembrane based sensors. Imaging techniques-digital & molecular.

UNIT IV

Drug delivery systems –polymer therapeutics - polymer drug conjugates; polymeric micelles, Liposome. Determination of mechanical properties - Mechanical testing, Elasticity, Toughness.

UNIT V

Application of Nanobiotechnology in medicine, Drug designing and Cancer treatment. Medical, Social and Ethical considerations of Nanobiotechnology.

- Biomaterials Sciences: An Introduction to Materials in Medicine 2nd Edition, Buddy
 Ratner, Allan S. Hoffman, Frederick J. Schoen and Jack E. Lemons.
- Lehninger's Principles of Biochemistry, 4th Edition, David L. Nelson and Michael M. Cox, 2006
- 3. Nanobiotechnology: Concepts, applications and perspectives, Christof M. Niemayer, Chad A. Mirkin, Wiley VCH publishers 2004.
- 4. Bionanotechnology: Lessons from Nature, David. S. Goodsell. Jhonwiley 2006.
- 5. Naobiotechnology: Molecular Diagnosis, K.K. Jain, Tailor L. Francis Group.

ELECTIVE-MICROBIAL DISEASE AND CONTROL-M16UBTE06

UNIT-I

Microorganisms - microbial interactions - pathogens. General epidemiology - pathogenesis - pathology - diagnostic procedure - clinical manifestation - prevention and control measures.

UNIT-II

Virus: HIV, Pox virus, and Picorna virus -Epidemiology – pathogenesis - pathology - diagnostics procedure - clinical manifestation -prevention and control measures.

UNIT-III

Bacteria: Streptococcus, Staphylococcus and Salmonella – Epidemiology - pathogenesis - pathology - diagnostic procedure - clinical manifestation - prevention and control measures.

UNIT-IV

Fungi: Aspergillus, Candida and Microspora-Epidemiology - pathogenesis-pathology - diagnostic procedure - clinical manifestation-prevention and control measures.

UNIT-V

Protozoa: Entamoeba histolytica, Plasmodium species and Trypanosoma gambiense – Epidemiology – pathogenesis - pathology -diagnostic procedure - clinical manifestation-preventijon and control measures - vectors.

- 1. David Green Wood Richard slack & John Peuthrer. (1992). Medical Microbiology: A Guide to Microbial Infections: Pathogenesis, Immunity, Laboratory Diagnosis and Control. Churchill Livingstone
- 2. Paniker and Sougata Ghosh. (2013). Paniker'S Textbook of Medical Parasitology. Jaypee Brothers Medical Publishers (P) Ltd.
- 3. Anantanarayan & Panekar. (2017). Textbook of Microbiology. Universities Press
- 4. Wilson & Topley Hodder Arnold (1990). Principles of Bacteriology, Virology and Immunity; 8th revised edition.
- 5. Jagdish Chander. (2017). Textbook of Medical Mycology. Jaypee Brothers Medical Publishers; Fourth edition.
- 6. Karen C. Carroll, Janet S. Butel, Stephen A. Morse. (2013). Medical MicrobiologyGeo. F. Brooks, McGraw Hill Education; 26 edition

ELECTIVE-PHARMACEUTICAL BIOTECHNOLOGY-M16UBTE07

UNIT-I

History & Principle of pharmacology. Drug nomenclature & Classification systems. General Principles of Drug action Pharmaco kinetics, Pharmaco dynamics, measurement of drug action.

UNIT-II

Chemo therapeutic drugs - Protein synthesis inhibitors, Antibacterial, antifungal, antiprotozoal, antiviral, Antihelmithic. chemotherapy in anticancer and antiinflammatory drugs.

UNIT-III

Techniques of r-DNA technology for production: Insulin, HGH, GRF, Erythropoietins, IFN, TNF, Interleukins, Clotting factor VIII.

UNIT-IV

Production of Ergot alkaloids, Probiotics, Production of recombinant vaccines. ISO standard for industrial production.

UNIT-V

Protein and tissue engineering. Therapeutic proteins – Formulation, delivery and stability. Pharmaceutical bio-assay – toxin detection, antiviral and anticancer bioassay.

- 1. Murugesh, N. (2014). A concise Text Book of Pharmacology, 6th Ed. Sathya Publishers, Madurai.
- 2. Dubey, R.C. (1993). A Text Book of Biotechnology S. Chand & Co Ltd, New Delhi.
- 3. Purohit, S.S. and Kakrani, Saluja. (2003). Pharmaceutical Biotechnology. Agrobios, India
- 4. Mary J. Myuk, Richard, A.Hoarey, Pamala. (2014). Pharmacology Lippinwitt Williams edition.
- 5. Rang, H.P. Pale, M.M. Moore, J.M. (2003). Pharmacology. Blackwell Publishing Ltd (Churchill Livingston).

ELECTIVE-INDUSTRIAL SAFETY- M19UBTE08

UNIT-I

Site selection, plant layout- design for ventilation - basic rules and requirements which govern the chemical industries – social environmental setup – tolerance limit of the society.

UNIT-II

Chemical hazards classification – hazards due to fire and explosion – safety analysis – chemical and job safety – safe handling and operation of materials and machineries.

UNIT-III

Types of hazard analysis – hazard identification – HAZOP – hazard survey – Fault tree analysis - event tree analysis.

UNIT-IV

Effective steps to implement safety procedure – periodic advice and constant maintenance – personal protective equipments- types – fire fighting equipments.

UNIT - V

Introduction – biosafety issues in Biotechnology – Historical background – primary contaminants for biohazards biosafety guidelines and regulations (National and International) – operation of biosafety guidelines and regulation of Government of India – risk analysis – risk assessment – risk management.

- 1. Blake R.P. (1963). Industrial safety Prentice. Hall Inc. New Jersey, 2nd Edition.
- 2. Fawcett H.H. and Wood W.S. (1965). Safety and Hazard prevention in chemical operationInter sciences

ELECTIVE-BIOFERTILIZER TECHNOLOGY-M16UBTE08

UNIT-I

An introduction to fertilizers, synthetic fertilizers, natural fertilizers, inorganic fertilizers, organic fertilizers, bio-fertilizers - importance, advantages and constraints.

UNIT-II

Isolation, culturing methods, enumeration and identification of microbial species - Rhizobium, Azospirillum, Azotobacters, blue green algae and phosphate solubilisers.

UNIT-III

Morphology of Rhizobium, Azospirilium, Azotobacters, blue green algae and phosphate solubilisers and maintenance.

UNIT-IV

Preparation of microbial inoculants – large-scale production of microbes - their application as biofertilizers – crop responses to biofertilizers.

UNIT-V

Azolla - distribution, morphological and biochemical characteristics – cyanobacterial symbionts - azolla biofertilizer technology- organic matter and composting - method of processes, applications and limitations.

- Jeswani, L.M. and Balddev, B (1990). Advances in Pulse Production Technology. ICAR, New Delhi
- 2. Malsen, L.J.G.V. and S.Somaatmadja. (1993). PROSEA-Plant Resources of South East Asia. Oil and Pulses. International Book Distributors, Dehradun.
- 3. SubbaRao, N.S. (2000). Biofertilizers in Agriculture. Oxford & IBH publishing Co., New Delhi
- 4. Daniel Sundararaj, D. and G.Thulasidas. (1993). Paniker'S Textbook of Medical Parasitology, Macmilan India Ltd.

LAB IN PLANT AND ANIMAL BIOTECHNOLOGY - M16UBTP05

Plant Biotechnology

- 1. Aseptic culture techniques for establishment and maintenance of cultures.
- 2. Tissue culture media preparation: Preparation of stock solutions of MS, Whites and Gamborg media.
- 3. Establishment of meristem culture using MS medium
- 4. Isolation of protoplasts.
- 5. Establishment and maintenance of callus culture.
- 6. Establishment and maintenance of suspension culture.
- 7. Synthetic seeds (Entrapment method).
- 8. Isolation of genomic DNA from plant.

Animal Biotechnology

- 1. Preparation & sterilization of animal cell culture media: balanced salt solution and DMEM.
- 2. Disaggregation of tissues Trypsinization.
- 3. Culture of chick embryo fibroblast (monolayer).
- 4. Viability test and cell counting.
- 5. Inoculation of virus and observation.
- 6. Applications of CO₂ incubator & inverted microscope.

LAB IN ENVIRONMENTAL BIOTECHNOLOGY - M16UBTP06

- 1. Isolation and enumeration of microorganism from air
- 2. Isolation of halophiles
- 3. Isolation of heavy metal resistance microorganisms
- 4. Determination of soil and water pH
- 5. Determination of dissolved sulphate in water
- 6. Determination of residual chlorine
- 7. Analysis of TDS in effluent
- 8. Estimation of total solids in the effluent sample
- 9. Isolation of coli forms from water
- 10. Dissolved oxygen (DO) Experiment
- 11. Biochemical Oxygen Demand (BOD) Experiment
- 12. Chemical Oxygen Demand (COD) Experiment